Improvement of Elastic Property of Circular Weft Knit Three-Thread Fleece Fabric by Changing Stitch Length

2021 ◽  
Vol 8 (1) ◽  
pp. 25-32
Author(s):  
Md. Shakhawat Hossain ◽  
Shah Alimuzzaman ◽  
Abu Naser Md Ahsanul Haque

The market demand for three-thread fleece fabric is increasing steadily due to its soft and bulky texture. Garments made from knitted fleece fabric, such as sweaters and jackets, are generally used for outdoor wear, especially in the winter season because of their warmth, moisture, and absorption properties. However, the elastic properties of three-thread fleece fabric is reduced significantly after the raising operation. This study aimed to increase the elastic recovery of three-thread fabric by changing the stitch length during the manufacturing process in industrial-scale production. The results showed that by varying the stitch length, the elastic recovery was improved by around 9%. Hence, the developed method can be used in textile knitting industries to improve the elastic recovery of fleece fabric.

2021 ◽  
Vol 23 (1) ◽  
pp. 11-17
Author(s):  
Siti Nur Jannah ◽  
Yumna Rahmadias Hanifa ◽  
Adi Budi Utomo ◽  
Ashar Kurnia Dian Prambodo ◽  
Arina Tri Lunggani

Marine organism is one of the riches in the ocean of Indonesia. The benefits of sea use for new products produced are widely used and have high market demand. Enzymes that have marine interests have unique properties and have good benefits for industry. This study aims to isolate the bacteria that have symbionts with Padina sp and determine the potential of the enzyme hydrolase produced by these bacteria. Isolation is done by the spread plate method. Pure isolates obtained were then tested for the potential of the enzyme hydrolase on selective media. Clear zone measurements are performed to determine which bacterial isolates are good for enzyme production. The results obtained by 6 isolates of pure bacteria, all of which include Gram negative bacteria that form bacilli. All isolates had the ability to produce different Protease, Lipase, Amylase and Cellulase enzymes. The enzymes obtained from these symbiotic bacteria are expected to be used for industrial-scale production in Indonesia. In addition, the presence of this symbiont bacteria is able to reduce the level of exploitation of Padina sp and contribute to preserving the marine ecosystem.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soad A. Abdelgalil ◽  
Nadia A. Soliman ◽  
Gaber A. Abo-Zaid ◽  
Yasser R. Abdel-Fattah

AbstractTo meet the present and forecasted market demand, bacterial alkaline phosphatase (ALP) production must be increased through innovative and efficient production strategies. Using sugarcane molasses and biogenic apatite as low-cost and easily available raw materials, this work demonstrates the scalability of ALP production from a newfound Bacillus paralicheniformis strain APSO isolated from a black liquor sample. Mathematical experimental designs including sequential Plackett–Burman followed by rotatable central composite designs were employed to select and optimize the concentrations of the statistically significant media components, which were determined to be molasses, (NH4)2NO3, and KCl. Batch cultivation in a 7-L stirred-tank bioreactor under uncontrolled pH conditions using the optimized medium resulted in a significant increase in both the volumetric and specific productivities of ALP; the alkaline phosphatase throughput 6650.9 U L−1, and µ = 0.0943 h−1; respectively, were obtained after 8 h that, ameliorated more than 20.96, 70.12 and 94 folds compared to basal media, PBD, and RCCD; respectively. However, neither the increased cell growth nor enhanced productivity of ALP was present under the pH-controlled batch cultivation. Overall, this work presents novel strategies for the statistical optimization and scaling up of bacterial ALP production using biogenic apatite.


2005 ◽  
Vol 495-497 ◽  
pp. 1591-1596 ◽  
Author(s):  
Vladimir Luzin ◽  
S. Banovic ◽  
Thomas Gnäupel-Herold ◽  
Henry Prask ◽  
R.E. Ricker

Low carbon steel (usually in sheet form) has found a wide range of applications in industry due to its high formability. The inner and outer panels of a car body are good examples of such an implementation. While low carbon steel has been used in this application for many decades, a reliable predictive capability of the forming process and “springback” has still not been achieved. NIST has been involved in addressing this and other formability problems for several years. In this paper, texture produced by the in-plane straining and its relationship to springback is reported. Low carbon steel sheet was examined in the as-received condition and after balanced biaxial straining to 25%. This was performed using the Marciniak in-plane stretching test. Both experimental measurements and numerical calculations have been utilized to evaluate anisotropy and evolution of the elastic properties during forming. We employ several techniques for elastic property measurements (dynamic mechanical analysis, static four point bending, mechanical resonance frequency measurements), and several calculation schemes (orientation distribution function averaging, finite element analysis) which are based on texture measurements (neutron diffraction, electron back scattering diffraction). The following objectives are pursued: a) To test a range of different experimental techniques for elastic property measurements in sheet metals; b) To validate numerical calculation methods of the elastic properties by experiments; c) To evaluate elastic property changes (and texture development) during biaxial straining. On the basis of the investigation, recommendations are made for the evaluation of elastic properties in textured sheet metal.


2017 ◽  
Vol 10 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Ashraf F. El-Baz ◽  
Hesham A. El-Enshasy ◽  
Yousseria M. Shetaia ◽  
Hoda Mahrous ◽  
Nor Zalina Othman ◽  
...  

Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1197 ◽  
Author(s):  
Warren Blunt ◽  
David Levin ◽  
Nazim Cicek

Microbial polyhydroxyalkanoates (PHAs) are promising biodegradable polymers that may alleviate some of the environmental burden of petroleum-derived polymers. The requirements for carbon substrates and energy for bioreactor operations are major factors contributing to the high production costs and environmental impact of PHAs. Improving the process productivity is an important aspect of cost reduction, which has been attempted using a variety of fed-batch, continuous, and semi-continuous bioreactor systems, with variable results. The purpose of this review is to summarize the bioreactor operations targeting high PHA productivity using pure cultures. The highest volumetric PHA productivity was reported more than 20 years ago for poly(3-hydroxybutryate) (PHB) production from sucrose (5.1 g L−1 h−1). In the time since, similar results have not been achieved on a scale of more than 100 L. More recently, a number fed-batch and semi-continuous (cyclic) bioreactor operation strategies have reported reasonably high productivities (1 g L−1 h−1 to 2 g L−1 h−1) under more realistic conditions for pilot or industrial-scale production, including the utilization of lower-cost waste carbon substrates and atmospheric air as the aeration medium, as well as cultivation under non-sterile conditions. Little development has occurred in the area of fully continuously fed bioreactor systems over the last eight years.


Author(s):  
Egil Angeid

The magneto-elastic property of steel shafts makes noncontacting torquementers possible. Early magneto-elastic torquemeters suffered from excessive sensitivity to variations in airgap and shaft temperature. These drawbacks have been eliminated in the Torductor® torquemeter, which has been very successful in low-speed industrial applications. In gas turbine applications, some special problems are encountered. These problems, and ways to minimize them, are discussed.


1989 ◽  
pp. 41-49 ◽  
Author(s):  
O. Albrecht ◽  
T. Ginnai ◽  
A. Harrington ◽  
D. Marr-Leisy ◽  
V. Rodov

Arts ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Nora K. Donoghue

Evidence for industrial scale production of numerous manufacturing processes has been attested in all phases of occupation at Poggio Civitate (Murlo). A subset of these, tools for the production of textiles and fibers, indicates that textile crafts were manufactured on a large scale as a part of a centralized and organized industry. These industrialized practices occurred within and around the monumental seventh and sixth century BCE complexes which displayed architectural decoration bearing iconographic themes that served to secure the positions of the aristocratic elites. This paper investigates the stamped decoration present on rocchetti and its relationship to the architectural decoration present on the monumental structures of the site. As small moveable objects used by members of the community, rocchetti present an opportunity to investigate the movement of elite images through the non-elite population of a community and their reception of aristocratic ideology presented in monumental structures.


2009 ◽  
Vol 3 (1-2) ◽  
pp. 99-110
Author(s):  
János Lazányi

Agricultural reform resulted a shift from collective farming to small-scale production in China. This reform also has resulted a strong increase in gross agricultural output, which coincides with a slower increase in labour productivity. At the beginning of the reforms, agriculture accounted for 70 percent of total employment in China and still employs more than 50%. As a result of these reforms, China has undergone impressive economic growth also in the agriculture; the country has become one of the world’s top exporters and is attracting record amounts of foreign investment. The government has also stepped up investments in rural areas to meet the market demand for agricultural products. Results are very competitive compared to Central and Eastern European countries, where agriculture accounted for only 15 percent of total employment, but agricultural reform resulted a strong decline in gross agricultural output, which coincides with a similarly strong decline in employment. When approaching the issue of sustainable agriculture, we have to take into consideration, which China and India feed the largest populations in the world and both countries have had its own agricultural successes in the past 50 years. China has used land far more efficiently than many developed countries. With nine percent of the world’s arable land, China is responsible for the greatest share of agricultural production worldwide. Volume of produced pork, eggs, wheat, cotton, tobacco, and rice has increased and China exports an increasing amount of product each year. China has opened his borders, but do not expose food consumers to price shocks and producers to risks and disincentives. In this paper, the land-tenure system and the trends of agricultural developments are analysed in China and selected countries of EU.


2021 ◽  
Vol 33 (5) ◽  
pp. 2863-2873
Author(s):  
Anna-Lena Höger ◽  
Carola Griehl ◽  
Matthias Noll

AbstractIn recent years microalgae products have developed increasing market demand, but sustainable industrial production is still challenged by biological stability of large-scale production plants. Yet the relationships between algal hosts, associated microbiomes, and contaminants in photobioreactors remains widely understudied. The aim of this study was to investigate the temporal development of microbiomes of four freshwater microalgae species Scenedesmus vacuolatus, Desmodesmus quadricauda, Chlorella sorokiniana, and Botryococcus braunii, in presence and absence of the zoosporic parasite Amoeboaphelidium protococcarum. To compare the effects of sterile and nonsterile culture conditions, infection experiments were performed in sterile laboratory (sterile) and simulated industrial conditions (open). Algal growth (dry weight, optical density, and nutrient consumption) was observed for 21 days, and samples of the associated microbiome were collected for bacterial 16S rRNA gene Illumina MiSeq sequencing. Infection patterns of A. protococcarum were algae species-specific, irrespectively of culture conditions. Bacterial community analysis demonstrated distinct and stable bacterial communities for each algae species, which were mostly dominated by α- and γ-Proteobacteria. Upon aphelid parasitosis, bacterial diversity increased, and community compositions diverged algae-specific over time. Moreover, bacterial functional traits shifted to detoxification, degradation, and cellulolysis once algae were infected. This study provides a first insight into the close connection between algae, associated bacterial microbiomes and appearing contaminants in photobioreactor systems.


Sign in / Sign up

Export Citation Format

Share Document