scholarly journals STUDY OF THE POSSIBILITY OF CONTROLLING ORE AVERAGING BY METHODS OF CLASSICAL CONTROL THEORY

Author(s):  
N.V. Bilfeld ◽  
◽  
D.V. Peyas ◽  
A.K. Shnabskaya

The importance of the problem of ore averaging at potash enterprises and the search for the optimal set of measures to eliminate the problem are shown. The problem of a large spread of insol-uble residues in the potash enterprises of the Verkhnekamsky District is identified. At the moment, it is solved by bunker averaging, but this does not always work effectively. It was suggested to use the previously described method of meaningful distribution in the warehouse and targeted sampling depending on the composition. A mathematical model of loading and unloading of the warehouse was constructed; algorithms and calculation of the coordinates of the point of discharge and extrac-tion of ore were proposed, depending on the content of insoluble residue and potassium chloride in the ore. This method excludes the possibility of manufacturing defects and carries out the averaging of raw materials in an optimal way. According to the indicators in the simulation model, targeted sampling in the warehouse reduces the percentage spread of insoluble residues in the ore. It was de-cided to investigate the sampling process in the warehouse for identification. Purpose of work is to test the possibility of controlling the sample as a conventional technological object using a propor-tional-integral-differentiating controller. To do this, the control object was identified, namely: a sin-gle impact jump was applied to the system input. Materials and methods. The standard impact was modeled on a previously developed warehouse simulation model, where the geometric parameters of the warehouse, the physical parameters of the ore elements, as well as the parameters of the noz-zle and scraper movement are set. With its help, potassium chloride from ore is conducted. The re-sults of the ore sampling are recorded for the initial installations, and then after a five percent jump. The simulation results are presented as a normalized graph for comparing the results and determin-ing the behavior of the system. Result. The resulting array of values was moved to the previously developed transfer function calculator. Based on the values found, a smoothed normalized graph was constructed, which had to be identified. As a result of this work, the transfer function of the first-order aperiodic link with a delay was obtained. Conclusion. When analyzing the graphs, a con-clusion about the validity of the obtained function was made. Based on the obtained arrays of val-ues, an error of 6,5% was calculated. The transfer function has been identified, so the sample in the warehouse can be controlled using a proportional-integral-differentiating controller.

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2383
Author(s):  
Daniele Torsello ◽  
Mattia Bartoli ◽  
Mauro Giorcelli ◽  
Massimo Rovere ◽  
Rossella Arrigo ◽  
...  

We report on the microwave shielding efficiency of non-structural composites, where inclusions of biochar—a cost effective and eco-friendly material—are dispersed in matrices of interest for building construction. We directly measured the complex permittivity of raw materials and composites, in the frequency range 100 MHz–8 GHz. A proper permittivity mixing formula allows obtaining other combinations, to enlarge the case studies. From complex permittivity, finally, we calculated the shielding efficiency, showing that tailoring the content of biochar allows obtaining a desired value of electromagnetic shielding, potentially useful for different applications. This approach represents a quick preliminary evaluation tool to design composites with desired shielding properties starting from physical parameters.


Author(s):  
Mikuláš Adámek ◽  
Rastislav Toman

Range Extended Electric Vehicles (REEV) are still one of the suitable concepts for modern sustainable low emission vehicles. REEV is equipped with a small and lightweight unit, comprised usually of an internal combustion engine with an electric generator, and has thus the technical potential to overcome the main limitations of a pure electric vehicle – range anxiety, overall driving range, heating, and air-conditioning demands – using smaller battery: saving money, and raw materials. Even though several REx ICE concepts were designed in past, most of the available studies lack more complex design and optimization approach, not exploiting the advantageous single point operation of these engines. Resulting engine designs are usually rather conservative, not optimized for the best efficiency. This paper presents a multi-parametric and multi-objective optimization approach, that is applied on a REx ICE. Our optimization toolchain combines a parametric GT-Suite ICE simulation model, modeFRONTIER optimization software with various optimization strategies, and a parametric CAD model, that first provides some simulation model inputs, and second also serves for the final designs’ feasibility check. The chosen ICE concept is a 90 degrees V-twin engine, four-stroke, spark-ignition, naturally aspirated, port injected, OHV engine. The optimization goal is to find the thermodynamic optima for three different design scenarios of our concept – three different engine displacements – addressing the compactness requirement of a REx ICE. The optimization results show great fuel efficiency potential by applying our optimization methodology, following the general trends in increasing ICE efficiency, and power for a naturally aspirated concept.


2021 ◽  
Vol 72 ◽  
pp. 215-222
Author(s):  
Mohanad R.A. Al-Owaidi ◽  
◽  
Mohammed L. Hussein ◽  
Ruaa Issa Muslim ◽  
◽  
...  

The Portland cement industry is one of the strategic industries in any country. The basis of an industry success is the availability of raw materials and, the low extraction in addition to transportation costs. The Bahr Al-Najaf region is abundant with limestone rocks but lacks primary gypsum. An investigation had been carried out to identify the source of secondary gypsum as an alternative to primary gypsum. Twelve boreholes were drilled for a depth of 2 m, as the thickness of suitable secondary gypsum layer ranges from 1 to 1.5 m. The mineralogical study revealed the predominance of gypsum followed by quartz and calcite, with an average of 62.9%, 19.6% and 14.35%, respectively. The geochemical analysis revealed that the content of SO3 is appropriate and ranging from 41.92% to 32.89% with an average of 37.73%. The SO3 content is within an acceptable range. The mean abundance of the major oxides of the study area may be arranged as SO3 > CaO> SiO2> MgO> Al2O> Fe2O3. The insoluble residue was at an acceptable rate. The laboratory experiments for milling secondary gypsum with clinker has successfully proven the production of Portland cement that matches the limits of the Iraqi Quality Standard (IQS) No. 5 of 1984. Great care must be taken when using secondary gypsum; secondary gypsum must be mixed well to maintain the chemical properties before blending with clinker and utilizing in the cement mill in the cement plant.


2021 ◽  
Vol 1032 ◽  
pp. 101-107
Author(s):  
Yi Fei Wang ◽  
Zhong De Shan ◽  
Hao Qin Yang ◽  
Yong Xin Ren ◽  
Ling Han Meng

In this paper, a thermal inkjet printing simulation model is established in the CFD simulation platform, and the influence of inkjet driver parameters and ink physical parameters on the printing process is studied by numerical simulation. The evaporation-condensation model is coupled with the VOF multiphase flow model in Fluent software to establish a thermal inkjet printing process simulation model. Based on the orthogonal test method, we investigate the influence of fluid physical parameters (ink viscosity, surface tension) and inkjet driver parameters (heater temperature value) on droplet formation by changing the physical parameters of the material and the boundary conditions of the model. Through the comparison of the results, exploring the adjustment rules of thermal inkjet technology and obtaining the optimal combination of material and process parameters for high-quality ink drop formation.


Soil Research ◽  
1975 ◽  
Vol 13 (1) ◽  
pp. 21 ◽  
Author(s):  
BA Carbon ◽  
KA Galbraith

A computer simulation model* of the water balance for plants growing on coarse soils was developed and tested against field measurements. The inputs for this model are measurable physical parameters. From the close agreement between simulated and observed results, it is suggested that evaporation, soil water storage and deep drainage may be satisfactorily predicted.


2008 ◽  
Vol 26 (No. 5) ◽  
pp. 309-323 ◽  
Author(s):  
H. Vlková ◽  
V. Babák ◽  
R. Seydlová ◽  
I. Pavlík ◽  
J. Schlegelová

Microbial biofilms which form on all types of surfaces of technological systems in the dairy industry and on dairy farms adversely affect the quality and safety of final products, i.e. both foodstuffs and raw materials used for their production. The fact that a number of microorganisms are alimentary pathogens, e.g. <I>Staphylococcus aureus</I> or <I>Listeria monocytogenes,</I> makes a serious problem directly affecting human health. Biofilms are usually formed by various species of microorganism, which protect each other against the effects of biocidal (antibacterial) agents and are resistant to these agents. The colonisation of surfaces of the open and closed piping systems, floors, waste, walls and ceilings of the production halls becomes a major problem in the selection of effective sanitation agents for their control. Based on the existing model studies, practical methods for testing the effectiveness of sanitation procedures should be evaluated, including the selection of biocides and comparison of the physical parameters of the sanitation procedures. Testing the effectiveness of the sanitation agents should be performed with the use of standardised tests, which consider microbial, structural, and chemical characteristics of the living microbial communities on specific contact surfaces in the food-processing industry.


2016 ◽  
Vol 881 ◽  
pp. 379-382
Author(s):  
Francine Machado Nunes ◽  
C.C. Ferreira ◽  
Flávio André Pavan ◽  
M.X. Guterres ◽  
L.M.H. Quintana

This work evaluates the incorporation of solid industrial waste such as rice husk ash, bottom ash from mineral coal and ash coming from the washing of sheep wool in Red Ceramic Mass (MRC) composed of clay. These raw materials were collected from industries in the municipality of Bagé-RS, Brazil. Percentages of 0, 5, 10, 20 and 30% of these wastes were added to (MRC) in order to reduce the environmental impacts, both by the clay extraction as well as for waste disposal. The physical tests (Atterberg limits) made with the clay, follow a normative standard. However, the tests made in the formulations served to compare the formulations’ behavior in relation to the clay. In order to verify if the tests proposed in (MRC) and if the formulations have changed significantly the investigated indexes, an Analysis of Variance (ANOVA) was performed. The results generally indicate that there are statistically significant differences, mainly regarding the Plasticity Index (PI) and the Liquidity Limit (LL), as ash was added in the formulations.


2019 ◽  
Vol 48 (2) ◽  
pp. 28-35
Author(s):  
Вера Евелева ◽  
Vera Eveleva ◽  
Татьяна Черпалова ◽  
Tatyana Cherpalova ◽  
Елена Шиповская ◽  
...  

Common characteristic of salad products is presence of cut raw vegetables in its composition. Cold cutting helps surface microorganisms penetrate into deep layers of the product. Hygienic cleanliness of raw ingredients is the major factor which contributes to storage stability of salad products. One of the most effective methods that helps enhance salad storage stability is initial treatment of vegetable raw materials with antimicrobial solutions. The author presents information on using solutions of hydrogen peroxide and peroxyacetic acid, sodium hypochlorite and compositions containing peroxide compounds and acetic, benzoic, sorbic, ascorbic, citric, lactic and other acids as well as their salts and containing guanidylic compounds. The article reveals that antimicrobial action of lactate-containing processing aids improves sufficiently if polymer cation-active compounds are introduced into their composition. The goal of the research is to study application effectiveness of new processing aids for treatment of raw peeled cut vegetables to reduce bacterial content and enhance storage stability before thermal treatment (boiling). The author tested the aids based on lactate-containing components. Physicochemical and physical parameters of the aids and their aqueous solutions are the following: active acidity (pH), titratab6le acidity, water and volatiles mass fraction, dynamic viscosity, surface tension. The article presents the data which characterize change in surface tension of aqueous solutions of the aids at the water-air interface depending on their concentration. It also gives quality indicators and microbial parameters of raw peeled cut vegetables after their processing with solutions of the aids. It was found out that treatment of raw peeled cut vegetables with processing aids based on lactate containing components prolongs their shelf life from 3 hours according to the applicable technology up to 48 hours.


2021 ◽  
Vol 288 ◽  
pp. 01024
Author(s):  
E. A. Muravyova ◽  
A. E. Listunova ◽  
S. Sh. Iskakova ◽  
A. B. Kaziyeva ◽  
A. N. Abdigaliyeva

The process of removing liquid from the surface or inner layers of materials is widely used by various enterprises. To implement such a process, such a method of dehydration as drying is most often used. In drying technology, drum dryers are the most common type. Controlling a drum dryer causes problems such as low efficiency (0.4-0.6) and high operating costs. To eliminate these problems, it is proposed to develop a system of adaptive fuzzy control of a continuous-flow drum dryer in order to increase the efficiency of control of technological processes of drying sand by using intelligent technologies. The method for this article is adaptive control using fuzzy logic control, which has the ability to control the parameters of the dryer depending on changes in the parameters of the control object or external disturbances acting on the control object. Adaptive fuzzy controllers are created on the basis of the proposed method. A model of the control object has been developed taking into account the links between the parameters of the technological regime. The processing of the research results was carried out using the MatLab software. The practical significance of the article lies in the fact that the results can be used in enterprises where parallel-flow drying drums are used to obtain a product of the highest quality, as well as to reduce the cost of purchasing raw materials.


Sign in / Sign up

Export Citation Format

Share Document