Fabrication NiO: Cu / Si Heterojunction by the Aerosol-Assisted Chemical Vapor Deposition (AACVD)

2021 ◽  
Vol 19 (4) ◽  
pp. 57-64
Author(s):  
Zaid Mohammed Jassim ◽  
Saba Abdulzahra Obaid AL Shiaa

In this research, as the thin films were formed by an AACVD process, copper doped nickel oxide was used to prepare the Cu doped Ni thin films by ratio doping (Cu/Ni = 0, 7.5, 10 and 12.8 at w.t %). Thin films of Cu doped NiO were heated at a crystallization temperature of 400 °C for 2 hours. The thin films obtained by the AACVD method have a film thickness of the order (45-62 nm). Promising solar cells that could be created by NiO film as the absorber using Cu doping. The NiO:Cu film has promising optical characteristics; about (3.5-2.8 eV) energy gap band and a high absorption coefficient, which means that the most suitable absorber can be commercially developed using the NiO:Cu film. Furthermore, there are no rare metals in the NiO: Cu film The best conversion efficiency with the heterojunction of NiO: Cu/Si and NiO:Cu was 2.8571429% which showed the possibility of a very low cost solar cell.

2015 ◽  
Vol 2 (2) ◽  
pp. 221-227 ◽  
Author(s):  
Peter Kovacik ◽  
Gabriella del Hierro ◽  
William Livernois ◽  
Karen K. Gleason

We demonstrate large-area conductive polymer films using oxidative chemical vapor deposition and apply them to low-cost and durable conductive textiles.


2019 ◽  
Vol 1 (8) ◽  
pp. 1408-1417 ◽  
Author(s):  
Arreerat Jiamprasertboon ◽  
Sebastian C. Dixon ◽  
Sanjayan Sathasivam ◽  
Michael J. Powell ◽  
Yao Lu ◽  
...  

2001 ◽  
Vol 688 ◽  
Author(s):  
Yong Dong Jiang ◽  
Jake McGee ◽  
Todd A. Polley ◽  
Robert E. Schwerzel ◽  
Andrew T. Hunt

AbstractLithium niobate has a wide variety of applications because of its excellent ferroelectric, piezoelectric and electrooptic properties. In this study, epitaxial lithium niobate thin films were deposited on c-sapphire (α-Al2O3) by the low-cost, open-atmosphere Combustion Chemical Vapor Deposition (CCVD) technique developed by MicroCoating Technologies, Inc. It was found that deposition temperature plays a critical role in determining the growth behavior and quality of the lithium niobate thin films. XRD measurements show that the lithium niobate films are epitaxial with two in-plane orientations (twin structure). A surface roughness (root mean square) of about 4 nm was obtained from the deposited film (about 200 nm thick), as measured by optical profilometry.


Author(s):  
Jason R. Heffelfinger ◽  
C. Barry Carter

Yttria-stabilized zirconia (YSZ) is currently used in a variety of applications including oxygen sensors, fuel cells, coatings for semiconductor lasers, and buffer layers for high-temperature superconducting films. Thin films of YSZ have been grown by metal-organic chemical vapor deposition, electrochemical vapor deposition, pulse-laser deposition (PLD), electron-beam evaporation, and sputtering. In this investigation, PLD was used to grow thin films of YSZ on (100) MgO substrates. This system proves to be an interesting example of relationships between interfaces and extrinsic dislocations in thin films of YSZ.In this experiment, a freshly cleaved (100) MgO substrate surface was prepared for deposition by cleaving a lmm-thick slice from a single-crystal MgO cube. The YSZ target material which contained 10mol% yttria was prepared from powders and sintered to 85% of theoretical density. The laser system used for the depositions was a Lambda Physik 210i excimer laser operating with KrF (λ=248nm, 1Hz repetition rate, average energy per pulse of 100mJ).


1989 ◽  
Vol 162 ◽  
Author(s):  
J. A. Freitas ◽  
S. G. Bishop

ABSTRACTThe temperature and excitation intensity dependence of photoluminescence (PL) spectra have been studied in thin films of SiC grown by chemical vapor deposition on Si (100) substrates. The low power PL spectra from all samples exhibited a donor-acceptor pair PL band which involves a previously undetected deep acceptor whose binding energy is approximately 470 meV. This deep acceptor is found in every sample studied independent of growth reactor, suggesting the possibility that this background acceptor is at least partially responsible for the high compensation observed in Hall effect studies of undoped films of cubic SiC.


Shinku ◽  
1997 ◽  
Vol 40 (8) ◽  
pp. 660-663
Author(s):  
Hideo OKAYAMA ◽  
Tsukasa KUBO ◽  
Noritaka MOCHIZUKI ◽  
Akiyoshi NAGATA ◽  
Hiromu ISA

2018 ◽  
Vol 10 (3) ◽  
pp. 03001-1-03001-6 ◽  
Author(s):  
Bharat Gabhale ◽  
◽  
Ashok Jadhawar ◽  
Ajinkya Bhorde ◽  
Shruthi Nair ◽  
...  

2009 ◽  
Vol 23 (09) ◽  
pp. 2159-2165 ◽  
Author(s):  
SUDIP ADHIKARI ◽  
MASAYOSHI UMENO

Nitrogen incorporated hydrogenated amorphous carbon (a-C:N:H) thin films have been deposited by microwave surface-wave plasma chemical vapor deposition on silicon and quartz substrates, using helium, methane and nitrogen ( N 2) as plasma source. The deposited a-C:N:H films were characterized by their optical, structural and electrical properties through UV/VIS/NIR spectroscopy, Raman spectroscopy, atomic force microscope and current-voltage characteristics. The optical band gap decreased gently from 3.0 eV to 2.5 eV with increasing N 2 concentration in the films. The a-C:N:H film shows significantly higher electrical conductivity compared to that of N 2-free a-C:H film.


Sign in / Sign up

Export Citation Format

Share Document