Pengaruh Variasi Suhu Dan Waktu Inkubasi Terhadap Aktivitas Enzim Selulase Dari Bakteri Serratia marcescens

2021 ◽  
Vol 23 (1) ◽  
pp. 33-42
Author(s):  
Laily Kurniawati ◽  
Endang Kusdiyantini ◽  
W Wijanarka

Enzymes are biocatalysts in living cells when cells metabolize. All living organisms are produced enzymes, both humans, animals, plants and microorganisms. One of the bacteria that has the potential to produce cellulose (EC 3.2.1.4) enzymes is Serratia marcescens. These bacteria can be isolated from water, soil and digestive tract. This research aims to find out the types of enzymes produced by S. Marcescens, to examine the effect of temperature and incubation time on selected enzyme activity. The type of enzyme test was qualitatively determined by S. marcescens growth on the amylolytic, cellulolytic, pectinolytic and chitinolytic selective medium based on the clear zone. This research was used a Completely Randomized Design (CRD). The first factor was the incubation time (T) which were 4 hours (T4), 8 hours (T8) and 12 hours (T12). The second factor was the treatment of incubation temperature (S) which were 40oC (S1), 50oC (S2) and 60oC (S3). Each treatment was repeated in 3 times. The data were obtained then analyzed using Anova (α = 0.05). If it is significantly different, furthermore proceed with the T test (BNT). The results showed that S. marcescens qualitatively produced only clear zones in the cellulolytic medium of 5.1 mm. The ANOVA results showed that incubation temperature (S), the interaction between incubation time (T) and incubation temperature (S) were did not have effect on cellulase activity, whereas incubation time (T)  gives a significant effect on cellulase activity were obtained at the incubation time for 12 hours (T12) with a value of 0.27 U / mL

2021 ◽  
Vol 8 (3) ◽  
pp. 52
Author(s):  
Chanon Suntara ◽  
Anusorn Cherdthong ◽  
Metha Wanapat ◽  
Suthipong Uriyapongson ◽  
Vichai Leelavatcharamas ◽  
...  

Saccharomyces cerevisiae is a yeast strain often used to improve the feed quality of ruminants. However, S. cerevisiae has limited capacity to provide biomass when inoculated with carbon sources and a low ability to produce cellulase enzymes. Here, we hypothesized that yeast in the rumen produces a large amount of biomass and could release cellulase enzymes to break down fiber content. Therefore, the aim of this study was to screen, isolate and identify yeast from the rumen fluids of Holstein Friesian steers and measure the efficiency of biomass production and cellulase activity. A fermentation medium containing sugarcane molasses as a carbon source and urea as a nitrogen source was optimized. Two fistulated–crossbred Holstein Friesian steers averaging 350 ± 20 kg body weight were used to screen and isolate the ruminal yeast. Two experiments were designed: First, a 12 × 3 × 3 factorial was used in a completely randomized design to determine biomass and carboxymethyl cellulase activity. Factor A was the isolated yeast and S. cerevisiae. Factor B was sugarcane molasses (M) concentration. Factor C was urea (U) concentration. In the second experiment, potential yeasts were selected, identified, and analyzed for 7 × 4 factorial use in a completely randomized design. Factor A was the incubation times. Factor B was the isolated yeast strains, including codes H-Khon Kaen University (KKU) 20 (as P. kudriavzevii-KKU20), I-KKU20 (C. tropicalis-KKU20), and C-KKU20 (as Galactomyces sp.-KKU20). Isolation was imposed under aerobic conditions, resulting in a total of 11 different colonies. Two appearances of colonies including asymmetric colonies of isolated yeast (indicated as A, B, C, E, and J) and ovoid colonies (coded as D, F, G, H, I, and K) were noted. Isolated yeast from the rumen capable of providing a high amount of biomass when inoculant consisted of the molasses 15% + urea 3% (M15 + U3), molasses 25% + urea 1% (M25 + U1), molasses 25% + urea 3% (M25 + U3), and molasses 25% + urea 5% (M25 + U5) when compared to the other media solution (p < 0.01). In addition, 11 isolated biomass-producing yeasts were found in the media solution of M25 + U1. There were 4 isolates cellulase producing yeasts discovered in the media solution of M25 + U1 and M25 + U5 whereas molasses 5% + urea 1% (M5 + U1), molasses 5% + urea 3% (M5 + U3), molasses 5% + urea 5% (M5 + U5), molasses 15% + urea 1% (M15 + U1), molasses 15% + urea 3% (M5 + U3), and M25 + U3 were found with 2, 3, 1, 2, 1, and 2 isolates, respectively. Ruminal yeast strains H-KKU20, I-KKU20, and C-KKU20 were selected for their ability to produce biomass. Identification of isolates H-KKU20 and I-KKU20 revealed that those isolates belonged to Pichia kudriavzevii-KKU20 and Candida tropicalis-KKU20 while C-KKU20 was identified as Galactomyces sp.-KKU20. Two strains provided maximum cell growth: P. kudriavzevii-KKU20 (9.78 and 10.02 Log cell/mL) and C. tropicalis-KKU20 (9.53 and 9.6 Log cells/mL) at 60 and 72 h of incubation time, respectively. The highest ethanol production was observed in S. cerevisiae at 76.4, 77.8, 78.5, and 78.6 g/L at 36, 48, 60, and 72 h of incubation time, respectively (p < 0.01). The P. kudriavzevii-KKU20 yielded the least reducing sugar at about 30.6 and 29.8 g/L at 60 and 72 h of incubation time, respectively. The screening and isolation of yeasts from rumen fluids resulted in 11 different yeasts being obtained. The potential yeasts discovered in the rumen fluid of cattle were Pichia kudriavzevii-KKU20, Candida tropicalis-KKU20, and Galactomyces sp.-KKU20. P. kudriavzevii-KKU20 had higher results than the other yeasts in terms of biomass production, cellulase enzyme activity, and cell number.


2005 ◽  
Vol 863 ◽  
Author(s):  
S. Ahmed ◽  
D.N. Buckley ◽  
S. Nakahara ◽  
Y. Kuo

AbstractA systematic investigation of the effect of annealing time and temperature on the incubation period for spontaneous morphology change (SMC) in electrodeposited copper metallization is reported. The incubation time is greatly reduced at higher temperatures. At each temperature, the remaining incubation time at room temperature was found to decrease approximately linearly with increasing annealing time. An Arhennius plot of the measured rates of decrease showed good linearity and yielded a value of 0.48 eV for the activation energy. This is consistent with a vacancy diffusion mechanism for the process occurring during the incubation period and supports our proposed mechanism for SMC.


2018 ◽  
Vol 19 (2) ◽  
pp. 159 ◽  
Author(s):  
Arom Septiani ◽  
W Wijanarka ◽  
MG Isworo Rukmi

The waste of cellulose in the agro-industry can be reduced by decomposing the cellulose polymer into glucose. This process was carried out by cellulase enzyme (EC 3.2.1.4) produced by cellulolytic bacteria. Bacteria required food as nutrition to survived their life, can be obtained through growth medium or enzyme production medium. Carbon, nitrogen and calcium belong to the essential nutrients contained in growth medium and enzyme production medium. The purpose of this study is to determine the effect of the addition of carbon, nitrogen and calcium source and the time of incubation on the production of cellulase enzyme from Seratia marcescens KE-B6 bacteria. This research used Completely Randomized Design (RAL) of Factorial Pattern with two factors. The first factor is the type of medium, the first medium is the standard medium (M1) and the second medium is enriched with carbon, nitrogen and calcium sources (M2), the second factor is the incubation time with 5 repetitions. The enzyme production is measured by the reducing sugar method. The data obtained were analyzed using Anova. The results showed that the addition of carbon, nitrogen, and calcium sources and incubation time did not affect the production of cellulase enzyme by Serratia marcescens KE-B6. Keywords: Cellulose, Cellulase enzyme, Serratia marcescens


2022 ◽  
Vol 10 (1) ◽  
pp. 47-50
Author(s):  
A. Mangalisu ◽  
A. K. Armayanti ◽  
I. I. Arief ◽  
Z. Wulandari

Eggs that have a balanced amino acid content can fullfill protein that needs in humans, However, eggs have a low shelf life so they were easily damaged. Fermentation technology on foodstuffs by using microbes has been widely carried out, among others using Lactobacillus bacteria. The type of Lactobacillus bacteria commonly used in egg fermentation is Lactobacillus plantarum. This study was conducted experimentally by using a completely randomized design (CRD) with 3 treatments and 3 replications each. The treatment was carried out by fermentation with an incubation temperature of 37 oC with different incubation times of 0, 48, and 96 hours with research parameters water content, crude fat, crude fiber, BETN and ash content. The results showed that different incubation time treatments on fermented chicken eggs had a significant effect (P<0.05) on water content, crude fat, crude fiber, BETN and ash content. The nutritional composition of fermented eggs by using L. plantarum could be seen from the decrease in water content, crude fiber and BETN and an increase in crude fat and ash content with increasing incubation time. The value of water content, crude fat, crude fiber, BETN and optimum ash content at an incubation temperature of 37 oC for 96 hours of incubation time.


Author(s):  
Suman Mehla ◽  
Soumana Datta

Introduction: Celluloses are important industrial enzymes and find application in several industrial processes. Effects of pH, temperature, incubation time, source of carbon and nitrogen were tested in submerged fermentation process in the production of cellulose by Curvularia pallescens isolated from textile effluent. Aims: The present study was attempted in a fungus; Curvularia pallescens isolated from textile effluent for maximizing its production under optimal conditions in submerged fermentation by using inexpensive substrate wheat bran. Study Design: The production medium was prepared in distilled water, supplemented with 4.5% wheat bran, 0.05% KCl, 0.2% KH2PO4, (carbon source), yeast extract (nitrogen source), maintained with pH of  5.5  and incubated at 28ºC for 120 h was found optimal for the production of cellulose. Results: The test fungus achieved maximum FPA activity followed by cellobiohydrolase, endoglucanase and β-glucosidase activity at  46.76, 42.06, 26.94 and 3.56 U/ml respectively at pH 5.5  (Fig. 4). The temperature of 280C produced maximum cellulase activity. Highest activity recorded was of FPA (38.94 U/ml), followed by cellobiohydrolase (30.29 U/ml), endoglucanase (22.41 U/ml), and β-glucosidase (3.98 U/ml). The effect of process parameters such as the effect of temperature, pH and inoculum size was investigated. Maximum cellulase and xylanase having an enzyme activity of 694.45 and 931.25 IU, respectively, were produced at 30ºC incubation temperature. Conclusion: The effect of process parameters such as effect of temperature, pH and inoculum size was also investigated. The production of primary metabolites by microorganisms is highly influenced by their growth, which is determined by the availability of the nutrients in the substrates.


Author(s):  
Chanon Suntara ◽  
Anusorn Cherdthong ◽  
Metha Wanapat ◽  
Suthipong Uriyapongson ◽  
Vichai Leelavatcharamas ◽  
...  

We hypothesized that rumen fluid with yeast producing cellulase enzyme can occur and also produces a high biomass compared to S. cerevisiae. Therefore, the aim of this study was to screen and isolate yeast from rumen fluids with an experimental design method. We optimized a fermentation medium containing sugarcane molasses as a carbon source and urea as a nitrogen source to measure the efficiency of biomass production and cellulase activity. Two fistulated-crossbred Holstein Friesian steers, averaging 350 &plusmn; 20 kg body weight, were used to screen and isolate ruminal yeast. The two experiments were designed. A 12 &times; 3 &times; 3 factorial was used in a completely randomized design to determine biomass and carboxymethyl cellulase activity. Factor A was isolated yeasts and S. cerevisiae. Factor B was sugarcane molasses (M) concentration. Factor C was urea (U) concentration. Potential yeast was selected for identified and analyzed as a 4 &times; 3 factorial use in a completely randomized design including. Factor A was incubation times. Factor B was isolated yeast strains including code H-KKU20 (as P. kudriavzevii-KKU20), I-KKU20 (C. tropicalis-KKU20), and C-KKU20 (as Galactomyces sp.-KKU20). Isolation was under aerobic conditions, resulting in a total of 11 different colonies. We noted two appearances of colonies including, asymmetric colonies of isolated yeast (indicated as A, B, C, E, and J) and ovoid colonies (coded as D, F, G, H, I, and K). The highest biomass was observed in three yeasts including codes H, I, and C-KKU20 when inoculated in 25% molasses with 1% urea (M25+U1) (p &lt;0.01). The highest CMCase activity was observed in yeast code H-KKU20 when inoculated in all media solutions (p &lt;0.01). Ruminal yeasts strains H-KKU20, I-KKU20, and C-KKU20 were selected for their ability to produce biomass and their CMCase enzyme synthesis. Identification of isolates H-KKU20 and I-KKU20 revealed that those isolates belonged to Pichia kudriavzevii-KKU20 and Candida tropicalis-KKU20, while C-KKU20 was identified as Galactomyces sp.-KKU20. Two strains provided maximum cell growth: P. kudriavzevii-KKU20 (9.78 and 10.02 Log cell/ml) and C. tropicalis-KKU20 (9.53 and 9.6 Log cells/ml) at 60 and 72 h of incubation time, respectively. The highest ethanol production was observed in S. cerevisiae: 76.4, 77.8, 78.5, and 78.6 g/L at 36, 48, 60, and 72 h of incubation time, respectively (p &lt;0.01). The P. kudriavzevii-KKU20 yielded the least reducing sugar about 30.6 and 29.8 g/L at 60 and 72 h of incubation time, respectively. It could be concluded that screening and isolating yeast from rumen fluids resulted in 11 different characteristics of yeasts. The first novel yeasts discovered in the rumen fluid of cattle were Pichia kudriavzevii-KKU20, Candida tropicalis-KKU20, and Galactomyces sp.- KKU20. P. kudriavzevii-KKU20 had higher results than the other yeasts in terms of biomass production, cellulase enzyme activity, and cell number.


2012 ◽  
Vol 75 (3) ◽  
pp. 585-590 ◽  
Author(s):  
CAIXIA GUO ◽  
TIANLI YUE ◽  
SHAIMAA HATAB ◽  
YAHONG YUAN

This study aimed to investigate the adsorption of patulin from apple juice, using two types of inactivated yeast powder: laboratory-prepared yeast powder (LYP) and commercial yeast powder (CYP). The effects of incubation time, pH, incubation temperature, adsorbent amount, and initial concentration of patulin and the stability of the yeast-mycotoxin complex were assessed. The results showed that the efficiencies of the two yeast types in adsorbing patulin were similar. The ability of the powders to remove patulin increased with longer incubation times, and patulin concentration was below detectable levels with LYP and CYP at approximately 36 and 30 h, respectively. The highest removal of patulin was achieved at pH 5.0 for both powder types, and there were no significant differences in patulin decrease at different temperatures (4, 29, and 37°C). Additionally, the adsorption percentage of patulin increased significantly with the increase of absorbent amount and decrease of initial concentration of patulin. Stability of the yeast-patulin complex was assessed, and patulin was more stable when washed in phosphate-buffered saline (pH 4.0) than in absolute ethyl alcohol. These results suggest that inactivated yeast powder has potential as a novel and promising adsorbent to bind patulin effectively.


2016 ◽  
Vol 19 (0) ◽  
Author(s):  
Ricardo Schmitz Ongaratto ◽  
Luiz Antonio Viotto

Summary The aim of this work was to separately evaluate the effects of pectinase and cellulase on the viscosity of pitanga juice, and determine the optimum conditions for their use employing response surface methodology. The independent variables were pectinase concentration (0-2.0 mg.g–1) and cellulase concentration (0-1.0 mg.g–1), activity time (10-110 min) and incubation temperature (23.2-56.8 °C). The use of pectinase and cellulase reduced the viscosity by about 15% and 25%, respectively. The results showed that enzyme concentration was the most important factor followed by activity time, and for the application of cellulase the incubation temperature had a significant effect too. The regression models showed correlation coefficients (R2) near to 0.90. The pectinase application conditions that led to the lowest viscosity were: concentration of 1.7 mg.g–1, incubation temperature of 37.6 °C and incubation time of 80 minutes, while for cellulase the values were: concentration of 1.0 mg.g-1, temperature range of 25 °C to 35 °C and incubation time of 110 minutes.


2019 ◽  
Vol 1 (1) ◽  
pp. 27-33
Author(s):  
Eman Darmawan

The purpose of this study was to determine the effect of substitution ketapan seed to chemical and organoleptic properties of  the resulted snack food, knowing the exact level of substitution, so obtain the snack food liked the panelists. The design used in this study was completely randomized design (CRD) with single factor that influences the concentration of seed flour substitution ketapan seed consisting of 5 treatments. Each treatment be repeated 3 times. The data obtained was analyzed by Analysis of Variance (ANOVA), if there was a difference between the treatment of advanced test conducted by Duncan`s Multiple Ranges Test Method (DMRT) at the level of 5%. Substitution of wheat flour with ketapan seed flour  affects the snack food produced, which can reduce the water content of the snack food and increase levels of protein and fiber snack food. Ketapan seed flour substitution preferred by the panelists was substitution ketapan seed flour up to 30% with a value of 3.52 and the criteria snack food produced had a water content of 3.67%, 15.10% db protein content, fiber content of 3.64 % db, brownish yellow color (2.95), a rather tasted wheat flour (3.35), and crispy (3.60).


Sign in / Sign up

Export Citation Format

Share Document