scholarly journals Transient Luminous Events, into the Stratosphere and the Mesosphere, observed during violent thunderstorms lightning, are explained thanks to laboratory jets of photons in air, occuring during emission of Gravitational Quanta

2021 ◽  
Vol 8 (5) ◽  
pp. 261-281
Author(s):  
Claude POHER ◽  
Danielle POHER

Abstract : A Gravitational field emitter, as we patented in 2006, is composed of an “active” material squeezed between two metallic electrodes. The active material is superconducting, with conductive or insulating grains added inside, to get local electric fields during brief electric discharges made into that emitter. Along such a discharge, the emitter propels itself, by anisotropic re-emission of interacting Gravitational Quanta. These emitted quanta accelerate distant matter particles placed along their trajectory. With early YBCO superconducting material emitters, cooled down by liquid nitrogen, we observed systematically a bright emission of light into the bath. This light emission is caused by nitrogen molecules’ ionization by gravitational quanta push. In 2012, the partial superconducting behavior of natural Graphite, at room temperature, was discovered, so we built new emitters from Graphite. These shown the same propelling effect as the early ones made of YBCO, with a lower performance. Here we record and discuss light emission in the form of jets of photons, in air, at room temperature, and pressure, during strong electric discharges into Graphite based emitters. These results enhance the confirmation of predictions from our theoretical Quantum model of Inertia and Gravitation. They explain also the enigmatic Transient Luminous Events observed in the atmosphere over thunderstorms clouds.  

Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 705 ◽  
Author(s):  
Liyao Zhang ◽  
Yuxin Song ◽  
Qimiao Chen ◽  
Zhongyunshen Zhu ◽  
Shumin Wang

InPBi thin film has shown ultra-broad room temperature photoluminescence, which is promising for applications in super-luminescent diodes (SLDs) but met problems with low light emission efficiency. In this paper, InPBi quantum dot (QD) is proposed to serve as the active material for future InPBi SLDs. The quantum confinement for carriers and reduced spatial size of QD structure can improve light emission efficiently. We employ finite element method to simulate strain distribution inside QDs and use the result as input for calculating electronic properties. We systematically investigate different transitions involving carriers on the band edges and the deep levels as a function of Bi composition and InPBi QD geometry embedded in InAlAs lattice matched to InP. A flat QD shape with a moderate Bi content of a few percent over 3.2% would provide the optimal performance of SLDs with a bright and wide spectrum at a short center wavelength, promising for future optical coherence tomography applications.


Author(s):  
G.D. Danilatos

Over recent years a new type of electron microscope - the environmental scanning electron microscope (ESEM) - has been developed for the examination of specimen surfaces in the presence of gases. A detailed series of reports on the system has appeared elsewhere. A review summary of the current state and potential of the system is presented here.The gas composition, temperature and pressure can be varied in the specimen chamber of the ESEM. With air, the pressure can be up to one atmosphere (about 1000 mbar). Environments with fully saturated water vapor only at room temperature (20-30 mbar) can be easily maintained whilst liquid water or other solutions, together with uncoated specimens, can be imaged routinely during various applications.


1986 ◽  
Vol 41 (1-2) ◽  
pp. 311-314 ◽  
Author(s):  
Y. M. Seo ◽  
J. Pelzl ◽  
C. Dimitropoulos

The 35Cl NQR frequency and spin-lattice relaxation rate in the compounds A2PbCl6 (A = Cs, Rb, NH4, K) have been investigated in the range 4.2 K to 500 K, and as a function of pressure at room temperature. NQR experiments conducted on (K: NH4)2PbCl6 mixed crystals have been used to complete the NQR-frequency versus temperature diagram of K2PbCl6, revealing two structural transitions at Tc1 ≅ 358 K and at TC2 ≅ 333 K.


2021 ◽  
Vol 238 ◽  
pp. 111514
Author(s):  
Sergii Golovynskyi ◽  
Oleksandr I. Datsenko ◽  
Luca Seravalli ◽  
Giovanna Trevisi ◽  
Paola Frigeri ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-3 ◽  
Author(s):  
Alka Garg ◽  
Monika Tomar ◽  
Vinay Gupta

Bismuth iodide is a potentially active material for room temperature radiation detector, as it is well reported in the literature that it has both wide energy band gap and high atomic absorption coefficient. Crystalline films of high atomic number and high radiation absorption coefficient can absorb the X-rays and convert them directly into electrical charges which can be read by imaging devices. Therefore, it was proposed to grow thin films of Bismuth iodide on glass substrate using thermal evaporation technique in vacuum to avoid the inclusion of impurities in the films. The structural studies of the films were carried out using XRD and optical absorption measurement was carried out in the UV/VIS region using spectrophotometer. All Bismuth iodide films grown at room temperature are polycrystalline and show X-ray diffraction peaks at angles reported in research papers. The optical transmission spectra of BiI3 films show a high transmission of about 80% in visible region with a sharp fall near the fundamental absorption at 650 nm. Resistivity of the as-grown film was found to be around 1012 ohm-cm suitable value for X-ray detection application. Films were subjected to scanning electron microscopy to study the growth features of both as-grown and annealed films.


2011 ◽  
Vol 493-494 ◽  
pp. 170-174
Author(s):  
Rumi Hiratai ◽  
Miho Nakamura ◽  
Akiko Nagai ◽  
Kimihiro Yamashita

We have shown that hydroxyapatite (HA), which characteristics were similar to those of bone’s inorganic components, had polarization capability and was possible to accumulate electricity under high temperature and pressure. Then, we presumed that bones had polarization capability which enabled electrical storage and conducted the experiment to measure the polarization capability of bones using rabbit’s femurs. After preparing and polarizing bone samples using KOH treatment (koh), KOH and baking treatment (koh+bake) and decalcification treatment (decalcification) as well as the bone without any treatment (untreat), quantitative amounts of stored charge in samples were determined by thermally stimulated depolarization current (TSDC) measurement of these samples. Under the condition of 400 °C for 1 h with the electric fields of 5kV/cm, samples of koh, koh+bake, and untreat showed polarization capability. In addition, under the polarization condition of 37 °C for 1 hour with the electric fields of 5kV/cm, all samples showed polarization capability. Those findings can be summarized that bones have the polarization capability which enables electrical storage and polarization of bones is possible even under the low temperature condition, which was at 37 °C in our experiment, where polarization is impossible for HA.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5887
Author(s):  
Linlin Shi ◽  
Hong Wang ◽  
Xiaohui Ma ◽  
Yunpeng Wang ◽  
Fei Wang ◽  
...  

The realization of electrically pumped emitters at micro and nanoscale, especially with flexibility or special shapes is still a goal for prospective fundamental research and application. Herein, zinc oxide (ZnO) microwires were produced to investigate the luminescent properties affected by stress. To exploit the initial stress, room temperature in situ elastic bending stress was applied on the microwires by squeezing between the two approaching electrodes. A novel unrecoverable deformation phenomenon was observed by applying a large enough voltage, resulting in the formation of additional defects at bent regions. The electrical characteristics of the microwire changed with the applied bending deformation due to the introduction of defects by stress. When the injection current exceeded certain values, bright emission was observed at bent regions, ZnO microwires showed illumination at the bent region priority to straight region. The bent emission can be attributed to the effect of thermal tunneling electroluminescence appeared primarily at bent regions. The physical mechanism of the observed thermoluminescence phenomena was analyzed using theoretical simulations. The realization of electrically induced deformation and the related bending emissions in single microwires shows the possibility to fabricate special-shaped light sources and offer a method to develop photoelectronic devices.


2007 ◽  
Vol 90 (2) ◽  
pp. 023110 ◽  
Author(s):  
Hao Huang ◽  
August Dorn ◽  
Vladimir Bulovic ◽  
Moungi G. Bawendi

Sign in / Sign up

Export Citation Format

Share Document