Hotspot analysis of rural inclusive finance based on keyword co-occurrence clustering

2022 ◽  
Vol 15 (1) ◽  
pp. 100
Author(s):  
Mei Zhang ◽  
Huihui Su ◽  
Jinghua Wen
Keyword(s):  
Author(s):  
Georgiana Grigoraș ◽  
Bogdan Urițescu

Abstract The aim of the study is to find the relationship between the land surface temperature and air temperature and to determine the hot spots in the urban area of Bucharest, the capital of Romania. The analysis was based on images from both moderate-resolution imaging spectroradiometer (MODIS), located on both Terra and Aqua platforms, as well as on data recorded by the four automatic weather stations existing in the endowment of The National Air Quality Monitoring Network, from the summer of 2017. Correlation coefficients between land surface temperature and air temperature were higher at night (0.8-0.87) and slightly lower during the day (0.71-0.77). After the validation of satellite data with in-situ temperature measurements, the hot spots in the metropolitan area of Bucharest were identified using Getis-Ord spatial statistics analysis. It has been achieved that the “very hot” areas are grouped in the center of the city and along the main traffic streets and dense residential areas. During the day the "very hot spots” represent 33.2% of the city's surface, and during the night 31.6%. The area where the mentioned spots persist, falls into the "very hot spot" category both day and night, it represents 27.1% of the city’s surface and it is mainly represented by the city center.


Author(s):  
Munazza Fatima ◽  
Kara J. O’Keefe ◽  
Wenjia Wei ◽  
Sana Arshad ◽  
Oliver Gruebner

The outbreak of SARS-CoV-2 in Wuhan, China in late December 2019 became the harbinger of the COVID-19 pandemic. During the pandemic, geospatial techniques, such as modeling and mapping, have helped in disease pattern detection. Here we provide a synthesis of the techniques and associated findings in relation to COVID-19 and its geographic, environmental, and socio-demographic characteristics, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) methodology for scoping reviews. We searched PubMed for relevant articles and discussed the results separately for three categories: disease mapping, exposure mapping, and spatial epidemiological modeling. The majority of studies were ecological in nature and primarily carried out in China, Brazil, and the USA. The most common spatial methods used were clustering, hotspot analysis, space-time scan statistic, and regression modeling. Researchers used a wide range of spatial and statistical software to apply spatial analysis for the purpose of disease mapping, exposure mapping, and epidemiological modeling. Factors limiting the use of these spatial techniques were the unavailability and bias of COVID-19 data—along with scarcity of fine-scaled demographic, environmental, and socio-economic data—which restrained most of the researchers from exploring causal relationships of potential influencing factors of COVID-19. Our review identified geospatial analysis in COVID-19 research and highlighted current trends and research gaps. Since most of the studies found centered on Asia and the Americas, there is a need for more comparable spatial studies using geographically fine-scaled data in other areas of the world.


BMC Nutrition ◽  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Biruk Shalmeno Tusa ◽  
Sewnet Adem Kebede ◽  
Adisu Birhanu Weldesenbet

Abstract Background Anemia is a global public health problem, particularly in developing countries. Assessing the geographic distributions and determinant factors is a key and crucial step in designing targeted prevention and intervention programmes to address anemia. Thus, the current study is aimed to assess the spatial distribution and determinant factors of anemia in Ethiopia among adults aged 15–59. Methods A secondary data analysis was done based on 2016 Ethiopian Demographic and Health Surveys (EDHS). Total weighted samples of 29,140 adults were included. Data processing and analysis were performed using STATA 14; ArcGIS 10.1 and SaTScan 9.6 software. Spatial autocorrelation was checked using Global Moran’s index (Moran’s I). Hotspot analysis was made using Gettis-OrdGi*statistics. Additionally, spatial scan statistics were applied to identify significant primary and secondary cluster of anemia. Mixed effect ordinal logistics were fitted to determine factors associated with the level of anemia. Result The spatial distribution of anemia in Ethiopia among adults age 15–59 was found to be clustered (Global Moran’s I = 0.81, p value <  0.0001). In the multivariable mixed-effectordinal regression analysis; Females [AOR = 1.53; 95% CI: 1.42, 1.66], Never married [AOR = 0.86; 95% CI: 0.77, 0.96], highly educated [AOR = 0.71; 95% CI: 0.60, 0.84], rural residents [AOR = 1.53; 95% CI: 1.23, 1.81], rich wealth status [AOR = 0.77; 95% CI: 0.69, 0.86] and underweight [AOR = 1.15; 1.06, 1.24] were significant predictors of anemia among adults. Conclusions A significant clustering of anemia among adults aged 15–59 were found in Ethiopia and the significant hotspot areas with high cluster anemia were identified in Somalia, Afar, Gambella, Dire Dewa and Harari regions. Besides, sex, marital status, educational level, place of residence, region, wealth index and BMI were significant predictors of anemia. Therefore, effective public health intervention and nutritional education should be designed for the identified hotspot areas and risk groups in order to decrease the incidence of anemia.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Seblewongel Tigabu ◽  
Alemneh Mekuriaw Liyew ◽  
Bisrat Misganaw Geremew

Abstract Background In developing countries, 20,000 under 18 children give birth every day. In Ethiopia, teenage pregnancy is high with Afar and Somalia regions having the largest share. Even though teenage pregnancy has bad maternal and child health consequences, to date there is limited evidence on its spatial distribution and driving factors. Therefore, this study is aimed to assess the spatial distribution and spatial determinates of teenage pregnancy in Ethiopia. Methods A secondary data analysis was conducted using 2016 EDHS data. A total weighted sample of 3381 teenagers was included. The spatial clustering of teenage pregnancy was priorly explored by using hotspot analysis and spatial scanning statistics to indicate geographical risk areas of teenage pregnancy. Besides spatial modeling was conducted by applying Ordinary least squares regression and geographically weighted regression to determine factors explaining the geographic variation of teenage pregnancy. Result Based on the findings of exploratory analysis the high-risk areas of teenage pregnancy were observed in the Somali, Afar, Oromia, and Hareri regions. Women with primary education, being in the household with a poorer wealth quintile using none of the contraceptive methods and using traditional contraceptive methods were significant spatial determinates of the spatial variation of teenage pregnancy in Ethiopia. Conclusion geographic areas where a high proportion of women didn’t use any type of contraceptive methods, use traditional contraceptive methods, and from households with poor wealth quintile had increased risk of teenage pregnancy. Whereas, those areas with a higher proportion of women with secondary education had a decreased risk of teenage pregnancy. The detailed maps of hotspots of teenage pregnancy and its predictors had supreme importance to policymakers for the design and implementation of adolescent targeted programs.


BMJ Open ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. e043565
Author(s):  
Chilot Desta Agegnehu ◽  
Adugnaw Zeleke Alem

ObjectiveTuberculosis is a major public health problem and is the second leading cause of death worldwide. BCG vaccination is a life-saving and important part of standard tuberculosis control measures, particularly in Ethiopia where tuberculosis is endemic. The End Tuberculosis Strategy targets of 2020 have not been achieved. Exploring spatial variations in BCG vaccination among children is vital to designing and monitoring effective intervention programmes. Therefore, this study aimed to explore the spatial variation in BCG vaccination among children in Ethiopia.DesignCross-sectional study design.SettingEthiopia.ParticipantsChildren aged 0–35 months.Primary outcomeBCG vaccination coverage.MethodsData from the 2016 Ethiopian Demographic and Health Survey were used and a total of 4453 children aged 0–35 months were included. Spatial autocorrelation analysis, cluster and outlier analysis, hotspot analysis, spatial interpolation, and spatial scan statistics were carried out to identify geographical risk areas for BCG vaccine utilisation. ArcGIS V.10.6 and SaTScan V.9.6 statistical software were employed to explore spatial pattern and significant hotspot areas for BCG vaccination among children.ResultsBCG vaccination was spatially clustered in Ethiopia at the regional level (Global Moran’s I=0.516, p<0.001). A total of 51 most likely clusters of low BCG vaccination were identified in the Somali and Afar regions (log-likelihood ratio=136.58, p<0.001). Significant secondary clusters were also identified in North West Gambela, South Amhara, South West Addis Ababa, North East Southern Nations, Nationalities, and People’s Region, and South West Oromia.ConclusionA low probability of receiving BCG vaccination was found among children in the Somali and Afar regions. Therefore, these areas should be given attention when designing effective immunisation strategies to improve BCG vaccination among children in order to reduce the burden of tuberculosis in Ethiopia.


2021 ◽  
pp. 100104
Author(s):  
Nadège CIREZI CIZUNGU ◽  
Elvis TSHIBASU ◽  
Eric LUTETE ◽  
Arsene MUSHAGALUSA ◽  
Yannick MUGUMAARHAHAMA ◽  
...  

2021 ◽  
Vol 10 (3) ◽  
pp. 133
Author(s):  
Purwanto Purwanto ◽  
Sugeng Utaya ◽  
Budi Handoyo ◽  
Syamsul Bachri ◽  
Ike Sari Astuti ◽  
...  

In this research, we analyzed COVID-19 distribution patterns based on hotspots and space–time cubes (STC) in East Java, Indonesia. The data were collected based on the East Java COVID-19 Radar report results from a four-month period, namely March, April, May, and June 2020. Hour, day, and date information were used as the basis of the analysis. We used two spatial analysis models: the emerging hotspot analysis and STC. Both techniques allow us to identify the hotspot cluster temporally. Three-dimensional visualizations can be used to determine the direction of spread of COVID-19 hotspots. The results showed that the spread of COVID-19 throughout East Java was centered in Surabaya, then mostly spread towards suburban areas and other cities. An emerging hotspot analysis was carried out to identify the patterns of COVID-19 hotspots in each bin. Both cities featured oscillating patterns and sporadic hotspots that accumulated over four months. This pattern indicates that newly infected patients always follow the recovery of previous COVID-19 patients and that the increase in the number of positive patients is higher when compared to patients who recover. The monthly hotspot analysis results yielded detailed COVID-19 spatiotemporal information and facilitated more in-depth analysis of events and policies in each location/time bin. The COVID-19 hotspot pattern in East Java, visually speaking, has an amoeba-like pattern. Many positive cases tend to be close to the city, in places with high road density, near trade and business facilities, financial storage, transportation, entertainment, and food venues. Determining the spatial and temporal resolution for the STC model is crucial because it affects the level of detail for the information of endemic disease distribution and is important for the emerging hotspot analysis results. We believe that similar research is still rare in Indonesia, although it has been done elsewhere, in different contexts and focuses.


Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 11
Author(s):  
Rokshana Stephny Geread ◽  
Abishika Sivanandarajah ◽  
Emily Rita Brouwer ◽  
Geoffrey A. Wood ◽  
Dimitrios Androutsos ◽  
...  

In this work, a novel proliferation index (PI) calculator for Ki67 images called piNET is proposed. It is successfully tested on four datasets, from three scanners comprised of patches, tissue microarrays (TMAs) and whole slide images (WSI), representing a diverse multi-centre dataset for evaluating Ki67 quantification. Compared to state-of-the-art methods, piNET consistently performs the best over all datasets with an average PI difference of 5.603%, PI accuracy rate of 86% and correlation coefficient R = 0.927. The success of the system can be attributed to several innovations. Firstly, this tool is built based on deep learning, which can adapt to wide variability of medical images—and it was posed as a detection problem to mimic pathologists’ workflow which improves accuracy and efficiency. Secondly, the system is trained purely on tumor cells, which reduces false positives from non-tumor cells without needing the usual pre-requisite tumor segmentation step for Ki67 quantification. Thirdly, the concept of learning background regions through weak supervision is introduced, by providing the system with ideal and non-ideal (artifact) patches that further reduces false positives. Lastly, a novel hotspot analysis is proposed to allow automated methods to score patches from WSI that contain “significant” activity.


Sign in / Sign up

Export Citation Format

Share Document