Mathematical modelling of surface tension effects in liquid wall films

Author(s):  
Jakov Baleta ◽  
Milan Vujanović ◽  
Neven Duić
Author(s):  
Benjamin Sauer ◽  
Nikolaos Spyrou ◽  
Amsini Sadiki ◽  
Johannes Janicka

The primary breakup under high-altitude relight conditions is investigated in this study where ambient pressure is as low as 0.4 bar and air, fuel and engine parts are as cold as 265 K. The primary breakup is crucial for the fuel atomization. As of today, the phenomena dictating the primary breakup are not fully understood. Direct Numerical Simulations (DNS) of liquid breakup under realistic conditions and geometries are hardly possible. The embedded DNS (eDNS) approach represents a reliable numerical tool to fill this gap. The concept consists of three steps: a geometry simplification, the generation of realistic boundary conditions for the DNS and the DNS of the breakup region. The realistic annular airblast atomizer geometry is simplified to a Y-shaped channel representing a planar geometry. Inside this domain the eDNS is located. The eDNS domain requires the generation of boundary conditions. A Large Eddy Simulation (LES) of the entire Y-shaped channel and a Reynolds-Averaged Navier-Stokes Simulation (RANS) of the liquid wall film are performed prior to the DNS. All parameters are stored transiently on all virtual DNS planes. These variables are then mapped to the DNS. Thus, high-quality boundary conditions are generated. The Volume-of-Fluid (VOF) method is used to solve for the two-phase flow. The results provide a qualitative insight into the primary breakup under realistic high-altitude relight conditions. Instantaneous snapshots in time illustrate the behavior of the liquid wall film along the prefilmer lip and illustrate the breakup process. It is seen that a slight variation of the surface tension force has a strong impact on the appearance of the primary breakup. Case 1 with the surface tension corresponding to kerosene at 293 K indicates large flow structures that are separated from the liquid sheet. By lowering the surface tension related to kerosene at 363 K, the breakup is dominated by numerous small structures and droplets. This study proves the applicability of the eDNS concept for investigating breakup processes as the transient nature of the phase interface behavior can be captured. At this time, the authors only present a qualitative insight which can be explained by the lack of quantitative data. The approach offers the potential of simulating realistic annular highly-swirled airblast atomizer geometries under realistic conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Sumudu S. Karunarathne ◽  
Dag A. Eimer ◽  
Lars E. Øi

The knowledge of physicochemical properties of a mixture of amine, water, and CO2 is beneficial in evaluating the postcombustion CO2 capture process and process equipment design. This study reviews the literature of density, viscosity, and surface tension measurements with the evaluated measurement uncertainties and proposed correlations for monoethanol amine (MEA), water, and CO2 mixtures. Adequate research has been performed to measure and develop correlations for pure MEA and aqueous MEA mixtures, but further studies are required for CO2-loaded aqueous MEA mixtures. The correlations fit measured properties with an acceptable accuracy, and they are recommended to use in process equipment design, mathematical modelling, and simulations of absorption and desorption.


1996 ◽  
Vol 7 (6) ◽  
pp. 575-594 ◽  
Author(s):  
J. A. Moriarty ◽  
E. L. Terrill

In this paper we examine the movement of hard contact lenses on the eye. In so doing, we take into account hydrodynamic forces underneath the lens, as well as surface tension forces at the lens periphery. This involves solving for the free surface of the tear film away from the lens in order to determine the magnitudes of the pressure and surface tension forces on the lens. The analysis, which assumes quasi-steady motion, is carried out in both two and three dimensions.


2008 ◽  
Vol 605 ◽  
pp. 181-206 ◽  
Author(s):  
I. M. GRIFFITHS ◽  
P. D. HOWELL

This paper concerns the manufacture of non-axisymmetric capillary tubing via the Vello process, in which molten glass is fed through a die and drawn off vertically. The shape of the cross-section evolves under surface tension as it flows downstream. The aim is to achieve a given desired final shape, typically square or rectangular, and our goal is to determine the required die shape.We use the result that, provided the tube is slowly varying in the axial direction, each cross-section evolves like a two-dimensional Stokes flow when expressed in suitably scaled Lagrangian coordinates. This allows us to use a previously derived model for the surface-tension-driven evolution of a thin two-dimensional viscous tube. We thus obtain, and solve analytically, equations governing the axial velocity, thickness and circumference of the tube, as well as its shape. The model is extended to include non-isothermal effects.


2019 ◽  
Vol 872 ◽  
pp. 147-176 ◽  
Author(s):  
C. Mavroyiakoumou ◽  
I. M. Griffiths ◽  
P. D. Howell

We develop a general model to describe a network of interconnected thin viscous sheets, or viscidas, which evolve under the action of surface tension. A junction between two viscidas is analysed by considering a single viscida containing a smoothed corner, where the centreline angle changes rapidly, and then considering the limit as the smoothing tends to zero. The analysis is generalized to derive a simple model for the behaviour at a junction between an arbitrary number of viscidas, which is then coupled to the governing equation for each viscida. We thus obtain a general theory, consisting of $N$ partial differential equations and $3J$ algebraic conservation laws, for a system of $N$ viscidas connected at $J$ junctions. This approach provides a framework to understand the fabrication of microstructured optical fibres containing closely spaced holes separated by interconnected thin viscous struts. We show sample solutions for simple networks with $J=2$ and $N=2$ or 3. We also demonstrate that there is no uniquely defined junction model to describe interconnections between viscidas of different thicknesses.


Author(s):  
K. T. Tokuyasu

During the past investigations of immunoferritin localization of intracellular antigens in ultrathin frozen sections, we found that the degree of negative staining required to delineate u1trastructural details was often too dense for the recognition of ferritin particles. The quality of positive staining of ultrathin frozen sections, on the other hand, has generally been far inferior to that attainable in conventional plastic embedded sections, particularly in the definition of membranes. As we discussed before, a main cause of this difficulty seemed to be the vulnerability of frozen sections to the damaging effects of air-water surface tension at the time of drying of the sections.Indeed, we found that the quality of positive staining is greatly improved when positively stained frozen sections are protected against the effects of surface tension by embedding them in thin layers of mechanically stable materials at the time of drying (unpublished).


Author(s):  
Charles TurnbiLL ◽  
Delbert E. Philpott

The advent of the scanning electron microscope (SCEM) has renewed interest in preparing specimens by avoiding the forces of surface tension. The present method of freeze drying by Boyde and Barger (1969) and Small and Marszalek (1969) does prevent surface tension but ice crystal formation and time required for pumping out the specimen to dryness has discouraged us. We believe an attractive alternative to freeze drying is the critical point method originated by Anderson (1951; for electron microscopy. He avoided surface tension effects during drying by first exchanging the specimen water with alcohol, amy L acetate and then with carbon dioxide. He then selected a specific temperature (36.5°C) and pressure (72 Atm.) at which carbon dioxide would pass from the liquid to the gaseous phase without the effect of surface tension This combination of temperature and, pressure is known as the "critical point" of the Liquid.


Author(s):  
Edward D. De-Lamater ◽  
Eric Johnson ◽  
Thad Schoen ◽  
Cecil Whitaker

Monomeric styrenes are demonstrated as excellent embedding media for electron microscopy. Monomeric styrene has extremely low viscosity and low surface tension (less than 1) affording extremely rapid penetration into the specimen. Spurr's Medium based on ERL-4206 (J.Ultra. Research 26, 31-43, 1969) is viscous, requiring gradual infiltration with increasing concentrations. Styrenes are soluble in alcohol and acetone thus fitting well into the usual dehydration procedures. Infiltration with styrene may be done directly following complete dehydration without dilution.Monomeric styrenes are usually inhibited from polymerization by a catechol, in this case, tertiary butyl catechol. Styrene polymerization is activated by Methyl Ethyl Ketone peroxide, a liquid, and probably acts by overcoming the inhibition of the catechol, acting as a source of free radical initiation.Polymerization is carried out either by a temperature of 60°C. or under ultraviolet light with wave lengths of 3400-4000 Engstroms; polymerization stops on removal from the ultraviolet light or heat and is therefore controlled by the length of exposure.


Sign in / Sign up

Export Citation Format

Share Document