Photon Doppler velocimetry measurements of the impact velocity during electromagnetic pulse welding of copper-steel tubular joints

2021 ◽  
Vol 62 (4) ◽  
pp. 237
Author(s):  
Irene Kwee ◽  
Wim De Waele ◽  
Koen Faes
Author(s):  
Shunyi Zhang ◽  
Joern Lueg-Althoff ◽  
Marlon Hahn ◽  
A. Erman Tekkaya ◽  
Brad Kinsey

Abstract Magnetic pulse welding (MPW) is a solid-state welding process that bonds similar and dissimilar metals using a high velocity collision. In this paper, effects of impact velocity, target tube thickness, and mandrel inclusion on the interfacial morphology were investigated through the welding of tubular parts, Al6060T4 (flyer) to Cu-ETP (target), by electromagnetic compression. The hypothesis tested in this research is that a “well-supported target,” i.e., either a thick target or the support of a mandrel, allows for vortices to be created at the interface during MPW provided that the impact velocity is sufficient. The mandrel used in the experiments was polyurethane with a Shore hardness of 92A, which was pre-stressed via a washer and nut. The impact velocity was measured via photon Doppler velocimetry (PDV) and used for the setup of numerical simulations. A 2D axisymmetric numerical model was implemented in LS-DYNA to predict the interfacial morphology. Thermal analyses in the numerical model were used to predict the local melting locations and compared with experimental observations. Both experimental and numerical results showed that the interfacial wavelength increased with an increase in the impact velocity and target thickness. Similarly, a thin target with mandrel support also caused an increase in the wavelength. Vortices were only generated with appropriate impact velocities and well-supported targets, i.e., again either a thick target or the support of a mandrel.


2014 ◽  
Vol 966-967 ◽  
pp. 489-499 ◽  
Author(s):  
Joern Lueg-Althoff ◽  
Amanda Lorenz ◽  
Soeren Gies ◽  
Christian Weddeling ◽  
Gunther Goebel ◽  
...  

The implementation of multi-material concepts and the manufacturing of modern lightweight structures, for example in automotive engineering, require appropriate joining technologies. The ability to join dissimilar materials without additional mechanical elements, chemical binders, or adverse influences of heat on the joining partners is key in reaching the desired weight reduction in engineering structures. The Magnetic Pulse Welding (MPW) process meets these demands, making it a viable alternative to conventional thermal welding and mechanical joining processes. The present paper focuses on the analytical determination of the impact velocity as one of the key parameters of MPW processes. On the basis of experimentally recorded data concerning the course of the discharge current and geometrical parameters of the welding setup, the respective velocity is determined. A comparison with measurement data gained by Photon Doppler Velocimetry is performed.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1468
Author(s):  
Puquan Wang ◽  
Daolun Chen ◽  
Yunqi Yan ◽  
Xinwei She ◽  
Bo Feng ◽  
...  

The aim of this study was to characterize detailed microstructural changes and bonding characteristics and identify the formation mechanism of collision surface of Al6061–Q355 steel dissimilar welded joints via electromagnetic pulse welding (EMPW). The collision surface was observed to consist of five zones from the center to the outside. The central non-weld zone exhibited a concave and convex morphology. The welding-affected zone mainly included melting features and porous structures, representing a porous joining. The secondary weld zone presented an obvious mechanical joining characterized by shear plateaus with stripes. The primary weld zone characterized by dimples with cavity features suggested the formation of diffusion or metallurgical bonding. The impact-affected zone denoted an invalid interfacial bonding due to discontinuous spot impact. During EMPW, the impact energy and pressure affected the changes of normal velocity and tangential velocity, and in turn, influenced the interfacial deformation behavior and bonding characteristics, including the formation of micropores which continued to grow into homogeneous or uneven porous structures via cavitation, surface tension, and depressurization, along with the effect of trapped air.


2020 ◽  
Vol 4 (4) ◽  
pp. 118
Author(s):  
Koen Faes ◽  
Rishabh Shotri ◽  
Amitava De

Magnetic pulse welding is a solid-state joining technology, based on the use of electromagnetic forces to deform and to weld workpieces. Since no external heat sources are used during the magnetic pulse welding process, it offers important advantages for the joining of dissimilar material combinations. Although magnetic pulse welding has emerged as a novel technique to join metallic tubes, the dimensional consistency of the joint assembly due to the strong impact of the flyer tube onto the target tube and the resulting plastic deformation is a major concern. Often, an internal support inside the target tube is considered as a solution to improve the stiffness of the joint assembly. A detailed investigation of magnetic pulse welding of Cu-DHP flyer tubes and 11SMnPb30 steel target tubes is performed, with and without an internal support inside the target tubes, and using a range of experimental conditions. The influence of the key process conditions on the evolution of the joint between the tubes with progress in time has been determined using experimental investigations and numerical modelling. As the process is extremely fast, real-time monitoring of the process conditions and evolution of important responses such as impact velocity and angle, and collision velocity, which determine the formation of a metallic bond, is impossible. Therefore, an integrated approach using a computational model using a finite-element method is developed to predict the progress of the impact of the flyer onto the target, the resulting flyer impact velocity and angle, the collision velocity between the flyer and the target, and the evolution of the welded joint, which are usually impossible to measure using experimental observations.


Soft Matter ◽  
2021 ◽  
Author(s):  
Siqi Zheng ◽  
Sam Dillavou ◽  
John M. Kolinski

When a soft elastic body impacts upon a smooth solid surface, the intervening air fails to drain, deforming the impactor. High-speed imaging with the VFT reveal rich dynamics and sensitivity to the impactor's elastic properties and the impact velocity.


Author(s):  
S. Jin ◽  
L. Deng ◽  
J. Yang ◽  
S. Sun ◽  
D. Ning ◽  
...  

This paper presents a smart passive MR damper with fast-responsive characteristics for impact mitigation. The hybrid powering system of the MR damper, composed of batteries and self-powering component, enables the damping of the MR damper to be negatively proportional to the impact velocity, which is called rate-dependent softening effect. This effect can keep the damping force as the maximum allowable constant force under different impact speed and thus improve the efficiency of the shock energy mitigation. The structure, prototype and working principle of the new MR damper are presented firstly. Then a vibration platform was used to characterize the dynamic property and the self-powering capability of the new MR damper. The impact mitigation performance of the new MR damper was evaluated using a drop hammer and compared with a passive damper. The comparison results demonstrate that the damping force generated by the new MR damper can be constant over a large range of impact velocity while the passive damper cannot. The special characteristics of the new MR damper can improve its energy dissipation efficiency over a wide range of impact speed and keep occupants and mechanical structures safe.


2005 ◽  
Vol 297-300 ◽  
pp. 1321-1326 ◽  
Author(s):  
Sang Yeob Oh ◽  
Hyung Seop Shin

The damage behaviors induced in a SiC by a spherical particle impact having a different material and size were investigated. Especially, the influence of the impact velocity of a particle on the cone crack shape developed was mainly discussed. The damage induced by a particle impact was different depending on the material and the size of a particle. The ring cracks on the surface of the specimen were multiplied by increasing the impact velocity of a particle. The steel particle impact produced the larger ring cracks than that of the SiC particle. In the case of the high velocity impact of the SiC particle, the radial cracks were generated due to the inelastic deformation at the impact site. In the case of the larger particle impact, the morphology of the damages developed were similar to the case of the smaller particle one, but a percussion cone was formed from the back surface of the specimen when the impact velocity exceeded a critical value. The zenithal angle of the cone cracks developed into the SiC decreased monotonically as the particle impact velocity increased. The size and material of a particle influenced more or less on the extent of the cone crack shape. An empirical equation was obtained as a function of impact velocity of the particle, based on the quasi-static zenithal angle of the cone crack. This equation will be helpful to the computational simulation of the residual strength in ceramic components damaged by the particle impact.


Author(s):  
Abhijeet Mohan Vaidya ◽  
Naresh Kumar Maheshwari ◽  
Pallippattu Krishnan Vijayan ◽  
Dilip Saha ◽  
Ratan Kumar Sinha

Computational study of the moderator flow in calandria vessel of a heavy water reactor is carried out for three different inlet nozzle configurations. For the computations, PHOENICS CFD code is used. The flow and temperature distribution for all the configurations are determined. The impact of moderator inlet jets on adjacent calandria tubes is studied. Based on these studies, it is found that the inlet nozzles can be designed in such a way that it can keep the impact velocity on calandria tubes within limit while keeping maximum moderator temperature well below its boiling limit.


2021 ◽  
Author(s):  
Mohamad Nasr ◽  
Thomas Geay ◽  
Sébastien Zanker ◽  
Recking Alain

<p>Quantifying bedload transport is important for many applications such as river management and hydraulic structures protection. Bedload flux measurements can be achieved using physical sampler methods. However, these methods are expensive, time-consuming, and difficult to operate during high discharge events. Besides, these methods do not permit to capture the spatial and temporal variability of bedload transport flux. Recently, alternative measuring technologies have been developed to continuously monitor bedload flux and grain size distribution using passive or active sensors. Among them, the hydrophone was used to monitor bedload transport by recording the sounds generated by bedload particles colliding on the river bed (referred as self-generated noise SGN). The acoustic power of SGN was correlated with bedload flux in field experiments. To better understand these experimental results and to estimate measurement uncertainties, we developed a theoretical model to simulate the SGN. The model computes an estimation of the power spectral density (PSD)by considering the contribution of all signals generated by impacts between bedload particles and the riverbed, and accounting for the attenuation of the acoustic signal between the source and the hydrophone position due to river propagation effects,. In this model, we</p><p>The energy of acoustic noise generated from the collision between two particles is mainly dependent on the transported particles' diameter and the impact velocity. We tested different empirical formulas for the estimation of the number of impact (impact rate) and the impact velocity depending on particle size and hydraulic conditions. To characterize the acoustic power losses as a function of distance and frequency, we used an attenuation function which was experimentally calibrated for different French rivers.</p><p>We tested the model on a field dataset comprising acoustic and bedload flux measurements. The results indicate that the PSD model allows estimating acoustic power (in between a range of one order of magnitude) for most of the rivers considered.  The model sensitivity was evaluated. In particular, we observed that it is very sensitive to the empirical formulas used to determine the impact rate and impact speed. In addition, special attention should be kept in mind on the assumption of the grain size distribution of riverbed which can generate large variability in some rivers particularly in rivers with a significant sand fraction.</p>


Sign in / Sign up

Export Citation Format

Share Document