Bone Cells as well as Bone Remodelling Surfaces in Renal Bone Disorders and Their Changes after Therapy — A Quantitative Analysis

2021 ◽  
Vol 22 (15) ◽  
pp. 8182
Author(s):  
Yongguang Gao ◽  
Suryaji Patil ◽  
Jingxian Jia

Osteoporosis is one of the major bone disorders that affects both women and men, and causes bone deterioration and bone strength. Bone remodeling maintains bone mass and mineral homeostasis through the balanced action of osteoblasts and osteoclasts, which are responsible for bone formation and bone resorption, respectively. The imbalance in bone remodeling is known to be the main cause of osteoporosis. The imbalance can be the result of the action of various molecules produced by one bone cell that acts on other bone cells and influence cell activity. The understanding of the effect of these molecules on bone can help identify new targets and therapeutics to prevent and treat bone disorders. In this article, we have focused on molecules that are produced by osteoblasts, osteocytes, and osteoclasts and their mechanism of action on these cells. We have also summarized the different pharmacological osteoporosis treatments that target different molecular aspects of these bone cells to minimize osteoporosis.


2011 ◽  
Vol 279 (1728) ◽  
pp. 451-456 ◽  
Author(s):  
Roger S. Seymour ◽  
Sarah L. Smith ◽  
Craig R. White ◽  
Donald M. Henderson ◽  
Daniela Schwarz-Wings

The cross-sectional area of a nutrient foramen of a long bone is related to blood flow requirements of the internal bone cells that are essential for dynamic bone remodelling. Foramen area increases with body size in parallel among living mammals and non-varanid reptiles, but is significantly larger in mammals. An index of blood flow rate through the foramina is about 10 times higher in mammals than in reptiles, and even higher if differences in blood pressure are considered. The scaling of foramen size correlates well with maximum whole-body metabolic rate during exercise in mammals and reptiles, but less well with resting metabolic rate. This relates to the role of blood flow associated with bone remodelling during and following activity. Mammals and varanid lizards have much higher aerobic metabolic rates and exercise-induced bone remodelling than non-varanid reptiles. Foramen areas of 10 species of dinosaur from five taxonomic groups are generally larger than from mammals, indicating a routinely highly active and aerobic lifestyle. The simple measurement holds possibilities offers the possibility of assessing other groups of extinct and living vertebrates in relation to body size, behaviour and habitat.


Author(s):  
M. Ashwin Chandra Veni ◽  
P. Rajathi

Bone forms the basic framework of the body and it consists of bone cells, ground substance and collagen fibres. The bone undergoes alternate deposition and resorption to withstand the biomechanical forces exerted. Osteoclasts, osteoblasts, osteocytes secrete numerous enzymes, cytokines, growth factors which interact among one another to perform the physiological activities taking place in bone. This article emphasizes on the secretions of osteoblast that interacts with the osteoclast precursor involved in osteoclastic stimulation and inhibition and vice versa osteoclastic activity on bone can trigger osteoblastic formation or inhibition. This interaction is explained based on 3 different modes: Direct cell-cell contact, gap junctions, diffusion of paracrine factors and the 3 phases of bone remodelling.


2002 ◽  
Vol 173 (3) ◽  
pp. 387-394 ◽  
Author(s):  
JE Compston

Bone and bone marrow, although often regarded as separate systems, function as a single unit. Cells in the bone marrow are the precursors of bone remodelling cells and exert an important regulatory role both on their own development and the remodelling process, acting as mediators for the effects of systemic and local factors. Other cells, such as immune cells and megakaryocytes, also contribute to the regulation of bone cell development and activity. Many diseases that affect the bone marrow have profound effects on bone, involving interactions between abnormal and normal marrow cells and those of bone. Although recent advances in bone physiology have produced new insights into the relationship between bone marrow and bone cells, much remains to be learnt about the mechanisms by which marrow and bone act in synergy to regulate bone remodelling, both in health and disease.


2019 ◽  
Vol 25 (22) ◽  
pp. 2459-2466 ◽  
Author(s):  
Emanuele Chisari ◽  
Nitin Shivappa ◽  
Shraddha Vyas

Background: Osteoporosis is a metabolic disease affecting the bone mineral density and thus compromise the strength of the bones. Disease prevention through diet is the objective of the study and discussion. Among the several nutrients investigated, the intake of phenols seems to influence bone mineral density by acting as free radical scavengers, preventing oxidation-induced damage to bone cells. In addition, the growing understanding of the bone remodelling process supports the theory that inflammation significantly contributes to the etiopathogenesis of osteoporosis. Methods: To provide an overview of current evidence on polyphenol-rich foods and osteoporosis prevention we made a comprehensive review of the literature focusing on the state of art of the topic. Results: Some polyphenol-rich foods, including olive oil, fruit and vegetable, tea and soy, seem to be beneficial for preventing osteoporosis disease and its progression. The mechanism is still partly unknown and may involve different pathways which include inflammation and other disease reactions. Conclusion: However, further research is needed to better understand the mechanisms regulating the molecular interaction between osteoporosis incidence and progression and polyphenol-rich foods. The current evidence suggests that dietary intervention with polyphenol rich foods may be useful to prevent incidence and progression of this condition.


2019 ◽  
Vol 4 (6) ◽  
pp. 221-229 ◽  
Author(s):  
Simon Donell

Subchondral bone remodelling is an integral part of osteoarthritis and involves the development of subchondral sclerosis seen on plain imaging, along with osteophyte formation. The development of these changes is due to persistent abnormal mechanical stresses which create a cellular and biomolecular response to microfractures in the subchondral bone and osteochondral junction. An early sign is bone marrow lesions seen on MRI scanning. Healing can occur at this stage by correcting the abnormal loads. Persistence leads to what is thought to be a delayed union or nonunion response by the bone. Microfractures of the osteochondral junction, coupled with articular cartilage fissuring and loss, allows synovial fluid to penetrate the subchondral bone along with cytokines and other molecules reacting with the bone cells to increase the pathological effects. This review gives an overview of the current thoughts on subchondral bone remodelling in osteoarthritis that is aimed at orthopaedic surgeons to help in the understanding of the pathogenesis of osteoarthritis and the role of surgical management. Cite this article: EFORT Open Rev 2019;4 DOI: 10.1302/2058-5241.4.180102


Author(s):  
C. F. ARIAS ◽  
F. BERTOCCHINI ◽  
M. A. HERRERO ◽  
J. M. LÓPEZ ◽  
G. E. OLEAGA

One of the most remarkable aspects of human homoeostasis is bone remodelling. This term denotes the continuous renewal of bone that takes place at a microscopic scale and ensures that our skeleton preserves its full mechanical compliance during our lives. We propose here that a renewal process of this type can be represented at an algorithmic level as the interplay of two different but related mechanisms. The first of them is a preliminary screening process, by means of which the whole skeleton is thoroughly and continuously explored. This is followed by a renovation process, whereby regions previously marked for renewal are first destroyed and then rebuilt, in such a way that global mechanical compliance is never compromised. In this work, we pay attention to the first of these two stages. In particular, we show that an efficient screening mechanism may arise out of simple local rules, which at the biological level are inspired by the possibility that individual bone cells compute signals from their nearest local neighbours. This is shown to be enough to put in place a process which thoroughly explores the region where such mechanism operates.


Author(s):  
Helen E. Turner ◽  
Richard Eastell ◽  
Ashley Grossman

This chapter discusses the anatomy and physiology of the bone, including mineralization, and outlines techniques in bone remodelling. It describes formation and resorption hormonal markers that are part of the bone remodelling cycle, such as procollagens and serums. It describes how diagnostic measures in these formation markers are increased for focal bone disorders like Paget’s disease, fibrous dysplasia, osteomalacia, bone metastases, myeloma, primary hyperparathyroidism, thyrotoxicosis, and acromegaly. The chapter also discusses osteoporosis, including causes, symptoms, and treatment options. Clinical suggestions for bone diagnoses and diseases are provided, based on dual-energy X-ray absorptiometry (commonly abbreviated as DXA), plain radiography, and bone biopsy. The chapter also defines osteogenesis imperfecta and describes its epidemiology and management. In addition, it outlines sclerosing bone disorders such as osteopetrosis, pycnodysostosis, and hyperostosis type Worth, as well as fibrodysplasia ossificans progressive.


2020 ◽  
Vol 22 (1) ◽  
pp. 77-104
Author(s):  
Aditi Sharma ◽  
Lalit Sharma ◽  
Rohit Goyal

: Bone is one of the dynamic tissues in the human body that undergoes continuous remodelling through subsequent actions of bone cells, osteoclasts, and osteoblasts. Several signal transduction pathways are involved in the transition of mesenchymal stem cells into osteoblasts. These primarily include Runx2, ATF4, Wnt signaling and sympathetic signalling. The differentiation of osteoclasts is controlled by M-CSF, RANKL, and costimulatory signalling. It is well known that bone remodelling is regulated through receptor activator of nuclear factor-kappa B ligand followed by the binding to RANK, which eventually induces the differentiation of osteoclasts. The resorbing osteoclasts secrete TRAP, cathepsin K, MMP-9 and gelatinase to digest the proteinaceous matrix of type I collagen and form a saucer-shaped lacuna along with resorption tunnels in the trabecular bone. Osteoblasts secrete a soluble decoy receptor, osteoprotegerin that prevents the binding of RANK/RANKL and thus moderating osteoclastogenesis. Moreover, bone homeostasis is also regulated by several growth factors, cytokines, calciotropic hormones, parathyroid hormone and sex steroids. The current review presents a correlation of the probable molecular targets underlying the regulation of bone mass and the role of essential metabolic elements in bone remodelling. Targeting these signaling pathways may help design newer therapies for treating bone diseases.


10.2741/e543 ◽  
2012 ◽  
Vol E4 (6) ◽  
pp. 2302-2321 ◽  
Author(s):  
Anna Teti
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document