scholarly journals Comparative Analysis of Two Methods of Assessment Wear of Dental Materials

2015 ◽  
Vol 9 (2) ◽  
pp. 105-109
Author(s):  
Sylwia M. Wojda

Abstract Wear of dental materials used for permanent dental fillings has a significant impact on their lifetime. Wear products generated during chewing process involving direct tribological contact between a composite and tooth enamel can cause damage not only to enamel itself but also to the entire tooth structure thus affecting the patient’s the health. It is essential therefore to assess the process of wear rates as well as the usefulness and effectiveness of the method used to measure these values. As there are a number of different methods used to quantify the loss of dental materials subjected to friction, eg.: scanning digital 3D models of dental casts, confocal microscope scanning or profilographometer measurements, the authors chose to analyze two selected research methods using confocal microscopy and profilographometer to assess their effectiveness. Two commercially available composite dental materials, i.e. ES and FFE previously subjected to friction tests in contact with human dental enamel, were used for the analysis.

2010 ◽  
Vol 160 ◽  
pp. 281-286 ◽  
Author(s):  
Lars Raue ◽  
Helmut Klein

Dental enamel is the most highly mineralised and hardest biological tissue in human body [1]. Dental enamel is made of hydroxylapatite (HAP) - Ca5(PO4)3(OH), which is hexagonal (6/m). The lattice parameters are a = b = 0.9418 nm und c = 0.6875 nm [1]. Although HAP is a very hard mineral, it can be dissolved easily in a process which is known as enamel demineralization by lactic acid produced by bacteria. Also the direct consumption of acid (e.g. citric, lactic or phosphoric acid in soft drinks) can harm the dental enamel in a similar way. These processes can damage the dental enamel. It will be dissolved completely and a cavity occurs. The cavity must then be cleaned and filled. It exists a lot of dental fillings, like gold, amalgam, ceramics or polymeric materials. After filling other dangers can occur: The mechanical properties of the materials used to fill cavities can differ strongly from the ones of the dental enamel itself. In the worst case, the filling of a tooth can damage the enamel of the opposite tooth by chewing if the interaction of enamel and filling is not equivalent, so that the harder fillings can abrade the softer enamel of the healthy tooth at the opposite side. This could be avoided if the anisotropic mechanical properties of dental enamel would be known in detail, hence then another filling could be searched or fabricated as an equivalent opponent for the dental enamel with equal properties. To find such a material, one has to characterise the properties of dental enamel first in detail for the different types of teeth (incisor, canine, premolar and molar). This is here exemplary done for a human incisor tooth by texture analysis with the program MAUD from 2D synchrotron transmission images [2,3,4].


2012 ◽  
Vol 188 ◽  
pp. 82-86
Author(s):  
Corina Mărcăuţeanu ◽  
Florin Topală ◽  
Meda Lavinia Negrutiu ◽  
Eniko Tunde Stoica ◽  
Cosmin Sinescu

Abfractions are wedge-shaped cervical lesions which appear due to flexure of enamel and/or dentin at some location distant from the actual point of loading. The tensions may reach the fatigue limit and lead to rupture of the amelar and dentinal materials. We used the finite element method (FEM) to investigate the effect of high occlusal forces on the dental and restorative materials placed in the cervical buccal region. We developed two 3D models of maxillary premolars in order to compare the stress profiles in the buccal cervical regions under functional (20 N) and parafunctional (800 N) occlusal loads. The discretization of the tooth morphology resulted in 18889 elements and 31425 nodes. The models was subjected to occlusal analysis. The equivalent tensions (Pa) found in the buccal cervical region of the premolars at the application of parafunctional occlusal loads (800 N) are high enough to induce the breakdown of dentinal and compomer materials (over 2.41E+08 Pa). Cervical stresses induced by masticatory forces (20 N) have much lower values, which are not harmful for the dental materials. In conclusion, occlusal overload can cause damage to both the dentinal and compomer restorative materials placed in the cervical buccal region of teeth.


2011 ◽  
Vol 36 (2) ◽  
pp. 222-230 ◽  
Author(s):  
S Sauro ◽  
I Thompson ◽  
TF Watson

CLINICAL RELEVANCE The bioactive glass (Sylc) reacts with saliva depositing hydroxycarbonate apatite (HCA) within the demineralized collagen fibrils and occluding dentinal tubules. Therefore, it may be used as a suitable desensitizing bioactive material for the treatment of DH and as an air-cutting powder before bonding procedures to remineralize tooth structure and/or prevent further demineralization within the resin–dentin interface.


2020 ◽  
Vol 11 (SPL3) ◽  
pp. 430-434
Author(s):  
Praveen Kumar S ◽  
Balaji Ganesh S ◽  
Vinay Sivasamy

The expression "Smart restorative material" alludes to those that can be changed in controlled style for example, stress, temperature moisture, pH and electrical or attractive fields. The need of great importance is to present dental materials that have biomimicking properties of regular tooth structure. Different biocompatible materials have been presented and generally utilized in numerous fields of dentistry. Smart restorative behaviour of substances occurs while it detects a few improvements from the overall circumstance and responds to it in a helpful, reproducible and for the maximum element reversible way. A key component of smart conduct incorporates its capacity to come back to the first state. A portion of these materials utilized are altered glass ionomers, calcium phosphate discharging pit and fissure sealants, smart composites, smart ceramic, compomers, orthodontic shape-memory alloys, amalgams, smart impression materials, smart sutures, smart burs, smart endodontic files and so forth. These materials have changed the dentistry and are the start of another part in Biosmart Dentistry.


2018 ◽  
Vol 69 (10) ◽  
pp. 2913-2915
Author(s):  
Daniela Jumanca ◽  
Anamaria Matichescu ◽  
Atena Galuscan ◽  
Laura Cristina Rusu ◽  
Cornelia Muntean

This experimental study aims to analyse the effectiveness of various materials used in demineralisation of dental enamel. This work aims to create a mechanical bond by filling the pegs with sealing material. In order to achieve this goal, five teeth were compared using different concentrations of orthophosphoric acid and exposure times. In this regard, five different tests were performed and the results were analysed using the SEM technique (scanning electron microscopy). These comparative analyses revealed that etching using 35% orthophosphoric acid for one minute and etching using Icon Etch for two minutes were the most effective.


2021 ◽  
Vol 875 ◽  
pp. 373-378
Author(s):  
Ali Haider ◽  
Omar Farooq Azam ◽  
Muhammad Talha ◽  
Saleem Akhtar

Restorative material is a class of dental materials used for direct filling and fabrication of indirect restoration. NiCr alloy is a restorative material frequently used for dental prostheses due to its properties and economic reasons. In present work beryllium free NiCrMo alloy was developed and studied for dental restoration application. The alloy have unique characteristics of resistance to oxidation and biocompatibility; the requisites for dental prostheses. NiCrMo alloy is found to possess mechanical strength and fabrication properties suitable for dental repairs. In this study the developed alloy was tested for its mechanical properties, biocompatibility and corrosion resistance. An in-vitro biocompatibility study was carried out. No signs of toxicity and no signs of cell growth inhibition, in presence of NiCrMo alloy specimen, were observed. Mechanical properties and corrosion resistance are found in the range that is suitable for dental prostheses and easy fabrication.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1458
Author(s):  
Bárbara Donadon Reina ◽  
Carolina Santezi Neto ◽  
Patrícia Petromilli Nordi Sasso Garcia ◽  
Marlus Chorilli ◽  
Giovana Maria Fioramonti Calixto ◽  
...  

Curcumin-mediated Photodynamic Inactivation (PDI) has shown great potential to disinfect specific sites on tooth enamel but may involve contact with restorative materials. Thus, before use in dentistry, it is necessary to investigate whether the PDI protocol causes undesirable changes in the surfaces of aesthetic restorative materials and dental enamel. This study investigated the effect of PDI mediated by curcumin (CUR) in a liquid crystal precursor system on color stability (ΔE), surface roughness (Ra), and microhardness (kgf) of three different composite resins and bovine dental enamel specimens. The microhardness and roughness readings were performed 60 days after the treatments while the color readings were performed immediately, 24, 48, and 72 h, 7, 14, 21, 30, and 60 days after the treatments. Results showed that CUR mediated-PDI does not seem to have the potential to promote any esthetic or mechanical changes to the surface of tooth enamel and can be applied safely in clinical practice. However, the results on color, roughness, and hardness obtained for composite resins show that some negative effects can be produced, depending on the type of restorative material; more experiments must be performed with different formulations and, perhaps, with lower concentrations of CUR.


2014 ◽  
Vol 142 (5-6) ◽  
pp. 365-370 ◽  
Author(s):  
Milos Beloica ◽  
Zoran Vulicevic ◽  
Zoran Mandinic ◽  
Ivana Radovic ◽  
Olivera Jovicic ◽  
...  

Goal of contemporary dentistry is to decrease the patient?s discomfort during treatment. Dentists aim to achieve maximum with the newly developed dental materials as well as with new cavity preparation techniques in the shortest time span. Since the development of the first constructed borer (drilling machine) for caries removal, the preparation techniques have considerably changed. The progress of dental materials as well as the cavity preparation techniques has led us to contemporary carbide tungsten and diamond borers that are used with obligatory water cooling. The innovation within this field represents newly developed polymer borers that can detect the difference between carious lesions and healthy tooth structure. In this way the cavity preparation may be performed without damaging dental healthy tissue. This is possible owing to their hardness which is lower than the hardness of intact dentin. Polymer borer preparation is painless with less vibration, while the increase in temperature is negligible. Lasers have been used in clinical dentistry since 1980s so it can be said that they represent a new technology. The function of lasers is based on ablation which requires water. Erbium lasers have shown the highest potential with their ability to produce effective ablation of hard dental tissues. Laser application in dentistry requires special training as well as some protective measures. Laser advantages, compared to traditional preparation techniques, involve the absence of vibration, painless preparation, possibility of preparation without anesthetic and easier patient?s adjustment to dental intervention which is of importance, especially in pediatric dentistry.


Author(s):  
Joshua Eisenstat ◽  
Dennis Gotthardt ◽  
Rebecca Assor ◽  
Liam Dempsey ◽  
Muhammad Hasibul Hasan

ABSTRACT Nanomaterials observe specialized properties relative to gross materials. Due to their small size, specialized nanomaterial properties include decreased reactivity, an increased surface area to volume ratio, heightened structural properties, and in some cases, antimicrobial and antibacterial effects. Current researchers are looking to use nanoparticle/nanomaterial properties to solve prevalent dental issues that cannot be addressed with traditionally used materials. This paper will serve as an extensive review of current nanomaterial applications as they pertain to dental fillings and dental filling processes. Comparative assessments of traditional materials used in dental fillings will be made as well as comparative assessments of currently used nanomaterials in dental fillings. Material comparisons are based on criteria pertaining to biocompatibility, toxicity, reactivity, cost, and antimicrobial/antibacterial properties. When comparing the three most currently used dental filling nanomaterials – Carbon-Based Nanotubes, Silica Nanoparticles and Silver-Coated Nanoparticles – it was observed that Silica Nanoparticles demonstrated the greatest material advantage and should be recommended for continued use. Issues regarding future developmental dental filling applications of graphene nanoparticles, organic nanoparticles and gold nanoparticles will also be discussed. Keywords: Nanomaterials, antibacterial, dental fillings, silica resins, biocompatibility.  


2021 ◽  
Vol 03 (02) ◽  
pp. 1-1
Author(s):  
Christopher Wilson ◽  
◽  
Antheunis Versluis ◽  
Daranee Tantbirojn ◽  
Martha Wells ◽  
...  

Prefabricated zirconia crowns (ZRCs) require a passive fit and more reduction than stainless steel crowns (SSC). To determine the mean and maximum reduction depths in the mesial-buccal and occlusal areas for three ZRC brands and one SSC in posterior primary typodont molars and to compare reduction depths to existing literature to determine the preparation’s proximity to pulpal tissue. Four primary maxillary and mandibular typodont teeth (J and S) were prepared according to the manufacturers’ guidelines for three ZRCs and an SSC. The teeth were scanned before and after preparation with an optical scanner, and the mean and maximum depths of reduction for each tooth were calculated in triplicate with custom software and statistically compared among the types of crown. The results were compared to existing data on primary tooth enamel and dentin thickness. Maximum mesial-buccal and occlusal depth respectively of preparation for any ZRC for tooth J was 1.19 mm and 1.58 mm while for tooth S it was 1.06 and 2.07mm Both EZ Crowns and Kinder Krowns required an additional 0.5mm occlusal reduction beyond the manufacturer’s recommendation for tooth S. Ideal preparations of ZRCs require more reduction than SSCs. Both EZ Crowns and Kinder Krowns require more reduction than the manufacturer’s recommendation for a mandibular first primary molar.


Sign in / Sign up

Export Citation Format

Share Document