scholarly journals Effects Of Nickel On The Microstructure And The Mechanical Properties Of Sn-0.7Cu Lead-Free Solders

2015 ◽  
Vol 60 (2) ◽  
pp. 1449-1454 ◽  
Author(s):  
A. Gyenes ◽  
A. Simon ◽  
P. Lanszki ◽  
Z. Gácsi

AbstractThis paper investigates the effects of small amount nickel addition (0, 200, 400, 800, 1800 ppm) on the microstructure and the mechanical properties of Sn-0.7Cu lead-free solder alloys. It is known that even ppm level Ni additions have significant effects on the microstructure of Sn-Cu solder alloys. Ni suppresses the growth ofβ-Sn dendrites in favour of eutectic formation. As the nickel content increases, the microstructure undergoes a morphological evolution from hypoeutectic through fully eutectic to hypereutectic. Along with these transformations, the mechanical properties of the alloy also significantly change. Based on the experimental results presented in this paper, the Sn-0.7Cu solder achieves maximum strength at the addition level of 800 ppm Ni, when the microstructure becomes fully eutectic.

2010 ◽  
Vol 654-656 ◽  
pp. 2450-2454 ◽  
Author(s):  
De Kui Mu ◽  
Hideaki Tsukamoto ◽  
Han Huang ◽  
Kazuhiro Nogita

High-temperature lead-free solders are important materials for electrical and electronic devices due to increasing legislative requirements that aim at reducing the use of traditional lead-based solders. For the successful use of lead-free solders, a comprehensive understanding of the formation and mechanical properties of Intermetallic Compounds (IMCs) that form in the vicinity of the solder-substrate interface is essential. In this work, the effect of nickel addition on the formation and mechanical properties of Cu6Sn5 IMCs in Sn-Cu high-temperature lead-free solder joints was investigated using Scanning Electron Microscopy (SEM) and nanoindentation. It was found that the nickel addition increased the elastic modulus and hardness of the (Cu, Ni)6Sn5. The relationship between the nickel content and the mechanical properties of the IMCs was also established.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000314-000318
Author(s):  
Tong Jiang ◽  
Fubin Song ◽  
Chaoran Yang ◽  
S. W. Ricky Lee

The enforcement of environmental legislation is pushing electronic products to take lead-free solder alloys as the substitute of traditional lead-tin solder alloys. Applications of such alloys require a better understanding of their mechanical behaviors. The mechanical properties of the lead-free solders and IMC layers are affected by the thermal aging. The lead-free solder joints on the pads subject to thermal aging test lead to IMC growth and cause corresponding reliability concerns. In this paper, the mechanical properties of the lead-free solders and IMCs were characterized by nanoindentation. Both the Sn-rich phase and Ag3Sn + β-Sn phase in the lead-free solder joint exhibit strain rate depended and aging soften effect. When lead-free solder joints were subject to thermal aging, Young's modulus of the (Cu, Ni)6Sn5 IMC and Cu6Sn5 IMC changed in very small range. While the hardness value decreased with the increasing of the thermal aging time.


2015 ◽  
Vol 1120-1121 ◽  
pp. 466-472
Author(s):  
Anett Gyenes ◽  
Erzsébet Nagy ◽  
Péter Lanszki ◽  
Zoltán Gácsi

In this study the effects of small amounts of nickel addition (0-2000 ppm) on the microstructure, on Cu6Sn5 intermetallic compound formation and the mechanical properties of a Sn-0.5Cu lead-free solder were investigated. It is known that even ppm level additions of Ni have significant effects on the microstructure of Sn-Cu solder alloys. Ni suppresses the growth of β-Sn dendrites in favour of eutectic formation. As the nickel content increases, the microstructure undergoes a morphology evolution from hypoeutectic through fully eutectic to hypereutectic. Furthermore, the presence of Ni in the Cu6Sn5 intermetallic compound phase stabilises its high-temperature allotrope η-Cu6Sn5.


2015 ◽  
Vol 10 (1) ◽  
pp. 2641-2648
Author(s):  
Rizk Mostafa Shalaby ◽  
Mohamed Munther ◽  
Abu-Bakr Al-Bidawi ◽  
Mustafa Kamal

The greatest advantage of Sn-Zn eutectic is its low melting point (198 oC) which is close to the melting point. of Sn-Pb eutectic solder (183 oC), as well as its low price per mass unit compared with Sn-Ag and Sn-Ag-Cu solders. In this paper, the effect of 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 wt. % Al as ternary additions on melting temperature, microstructure, microhardness and mechanical properties of the Sn-9Zn lead-free solders were investigated. It is shown that the alloying additions of Al at 4 wt. % to the Sn-Zn binary system lead to lower of the melting point to 195.72 ˚C.  From x-ray diffraction analysis, an aluminium phase, designated α-Al is detected for 4 and 5 wt. % Al compositions. The formation of an aluminium phase causes a pronounced increase in the electrical resistivity and microhardness. The ternary Sn-9Zn-2 wt.%Al exhibits micro hardness superior to Sn-9Zn binary alloy. The better Vickers hardness and melting points of the ternary alloy is attributed to solid solution effect, grain size refinement and precipitation of Al and Zn in the Sn matrix.  The Sn-9%Zn-4%Al alloy is a lead-free solder designed for possible drop-in replacement of Pb-Sn solders.  


2015 ◽  
Vol 830-831 ◽  
pp. 265-269
Author(s):  
Satyanarayan ◽  
K.N. Prabhu

In the present work, the bond strength of Sn-0.7Cu, Sn-0.3Ag-0.7Cu, Sn-2.5Ag-0.5Cu and Sn-3Ag-0.5Cu lead free solders solidified on Cu substrates was experimentally determined. The bond shear test was used to assess the integrity of Sn–Cu and Sn–Ag–Cu lead-free solder alloy drops solidified on smooth and rough Cu substrate surfaces. The increase in the surface roughness of Cu substrates improved the wettability of solders. The wettability was not affected by the Ag content of solders. Solder bonds on smooth surfaces yielded higher shear strength compared to rough surfaces. Fractured surfaces revealed the occurrence of ductile mode of failure on smooth Cu surfaces and a transition ridge on rough Cu surfaces. Though rough Cu substrate improved the wettability of solder alloys, solder bonds were sheared at a lower force leading to decreased shear energy density compared to the smooth Cu surface. A smooth surface finish and the presence of minor amounts of Ag in the alloy improved the integrity of the solder joint. Smoother surface is preferable as it favors failure in the solder matrix.


2017 ◽  
Vol 266 ◽  
pp. 196-200 ◽  
Author(s):  
Suchart Chantaramanee ◽  
Phairote Sungkhaphaitoon ◽  
Thawatchai Plookphol

In this research, we investigated the influence of indium and antimony additions on the microstructure, mechanical and thermal properties of Sn-3.0Ag-0.5Cu lead free solder alloys. The results revealed that the addition of 0.5 wt.%InSb into SAC305 solder alloys resulted to a reduced melting temperature by 3.8 °C and IMCs phases formed new Ag3(Sn,In) and SnSb in the Sn-rich matrix with a decreased grain size of 28%. These phases improved the mechanical properties of solder alloys. In addition, the mechanical properties of SAC305 solder alloys increased by adding 0.5 wt.%InSb, resulting in an increase of ultimate tensile strength of 24%, but the percent elongation decreased to 45.8%. Furthermore, the Vickers microhardness slightly increased of the SAC305 solder alloys.


2008 ◽  
Vol 62 (3) ◽  
pp. 148-152
Author(s):  
Aleksandra Milosavljevic ◽  
Dragana Zivkovic ◽  
Dragan Manasijevic ◽  
Nadezda Talijan ◽  
Aleksandar Grujic ◽  
...  

Lead-free soldering has become very popular in the world recently, especially in electronics, because of high ecological demands in industry. Some of lead-free solder alloys are already used in electronic industry, but despite that investigations are still going in order to find suitable replacement for Pb-Sn standard solder. In this paper phase equilibria and characterization of Sn-In-Ag alloys in section In:Ag = 7:3 are investigated. The results of phase diagram calculation are obtained by ThermoCalc software, and characteristic temperatures by DSC method. The results of XRD analysis, optical microscopy, microhardness and electrical conductivity are also presented. These results are given in order to contribute the knowledge about lead-free solders, especially Sn-In-Ag solder alloys, which are potential candidates for replacement standard lead solders.


2013 ◽  
Vol 572 ◽  
pp. 97-106 ◽  
Author(s):  
Wislei R. Osório ◽  
Leandro C. Peixoto ◽  
Leonardo R. Garcia ◽  
Nathalie Mangelinck-Noël ◽  
Amauri Garcia

2014 ◽  
Vol 895 ◽  
pp. 575-579
Author(s):  
Nur Aishah Aminah Mohd Amin ◽  
Dhafer Abdul Ameer Shnawah ◽  
Mohd Faizul Mohd Sabri ◽  
Suhana Binti Mohd Said

This paper reports on the effect of Fe addition in the range of 0.1 wt.% to 0.5 wt.% on the electrical resistivity of the Sn-1Ag-0.5Cu (SAC105) solder alloy. The electrical resistivity is characterized by the four-point probe technique. Results showed that the Fe-bearing SAC105 solder alloys exhibit lower electrical resistivity compared with the standard SAC105 solder alloy. Moreover, the electrical resistivity further decreases with increasing the amount of Fe addition. As Fe is a low-cost and non-hazardous element, along with the high mechanical reliability, the Fe-bearing SAC105 solder alloys also demonstrate good electrical characteristics, and hence may be an attractive candidate for a low cost, reliable formulation for lead free solders in electronics packaging.


Author(s):  
Biao Yuan ◽  
Zhimin Liang ◽  
Zongyuan Yang ◽  
Fei Shen ◽  
Da Xu ◽  
...  

AbstractSn–Sb lead-free solders are considered to substitute the tin–lead solders due to their great mechanical properties. At room temperature, the mechanical properties of Ni/Au/Sn–5Sb/Au/Ni and Ni/Au/Sn–5Sb–0.3Ag–0.05Cu/Au/Ni linear solder joints were investigated by nanoindentation experiments at different loads. The results showed that the Sn–Sb intermetallic compound (IMC) was distributed in the β-Sn matrix in Ni/Au/Sn–5Sb/Au/Ni solder joints. Co-addition of Cu and Ag resulted in the formation of the rod-shaped Cu6Sn5 and the fine granular Ag3Sn IMCs. At the same load and loading/unloading rate, the indentation depth and residual indentation morphologies of Ni/Au/Sn–5Sb–0.3Ag–0.05Cu/Au/Ni solder joints were smaller than those of Ni/Au/Sn–5Sb/Au/Ni solder joints. The hardness of the two kinds of solder joints decreased with the increase in load, while the Young’s modulus was independent of load. In addition, compared to the Ni/Au/Sn–5Sb/Au/Ni solder joints, the hardness, Young’s modulus and stress exponents of Ni/Au/Sn–5Sb–0.3Ag–0.05Cu/Au/Ni solder joints achieved an improvement due to the co-addition of Ag and Cu.


Sign in / Sign up

Export Citation Format

Share Document