scholarly journals An Investigation Into The Effect Of Isothermal Annealing On Magnetic Properties In The Alloy: Fe64Co10Y6B20

2015 ◽  
Vol 60 (3) ◽  
pp. 1987-1992
Author(s):  
M. Nabiałek

AbstractThis work presents the results of investigations into the structural and magnetic properties of the bulk amorphous alloy: Fe64Co10Y6B20. The structure, thermal stability and magnetic properties of the alloy were studied using: X-ray diffractometry, differential scanning calorimetry (DSC), and a vibrating sample magnetometer (VSM), respectively. The investigations were performed on samples of the alloy in both the ‘as-cast’ state, and the state resulting from a process of isothermal annealing at a temperature of 750 K for 30 minutes.The aim of the conducted studies was to relax the structure and improve the soft magnetic properties of the investigated alloy. The results show that annealing the alloy at a temperature well below its crystallisation temperature leads to an increase in the value of the saturation magnetisation and a decrease in the value of the coercivity. Utilising the ‘approach to the ferromagnetic saturation’ theorem, the nature of structural defects within the investigated material has been established. For both ‘as-cast’ and isothermally-annealed samples, the magnetisation process has been found to be connected with the existence of linear structural defects.

2013 ◽  
Vol 203-204 ◽  
pp. 288-291 ◽  
Author(s):  
Rafał Babilas ◽  
Ryszard Nowosielski ◽  
Wirginia Pilarczyk ◽  
Grzegorz Dercz

The work presents the structural, thermal and magnetic properties analysis of Fe72B20Si4Nb4 bulk metallic glasses in as-cast state and crystallization study of bulk amorphous alloy after annealing process. The studies were performed on bulk metallic glasses in of rods form with diameter of 1,5 and 2 mm. The structure analysis of the samples in as-cast state and phase analysis of studied alloy after annealing process was carried out by the X-ray diffraction (XRD) methods. Mössbauer spectroscopy (MS) was also used to investigate the local structure for studied bulk metallic glasses. Thermal properties associated with glass transition, onset and peak crystallization temperatures was examined by differential scanning calorimetry (DSC). The soft magnetic properties examination of tested material contained initial magnetic permeability and disaccommodation of magnetic permeability.


2015 ◽  
Vol 1120-1121 ◽  
pp. 440-445
Author(s):  
Hua Man

The glass forming ability and magnetic properties were investigated for adding neodymium to the Fe71-xNb4B25Ndx (x=0, 3, 5, 7,10) alloys prepared by copper suction casting. It was found that proper neodymium (x=5~10 at.%) could improve glass forming ability of Fe-Nb-B alloys effectively. Bulk amorphous Fe66Nd5B25Nb4 and Fe64Nd7B25Nb4 samples were obtained and presented high thermal stability and good soft magnetic properties. The value of activation energy of the first crystallization peak for the bulk amorphous alloy Fe64Nd7B25Nb4 is 683 kJ/mol.


2011 ◽  
Vol 25 (14) ◽  
pp. 1241-1251 ◽  
Author(s):  
SHEIKH MANJURA HOQUE ◽  
UMASREE DHAR ◽  
M. A. HAKIM ◽  
D. K. SAHA ◽  
HARI NARAYAN DAS

Fe -based alloy of the composition, Fe 74 Cu 0.8 Nb 2.7 Si 15.5 B 7 has been studied thoroughly in order to research the evolution of nanograins and soft magnetic properties. The composition has been significantly deviated from FINEMET type composition given by Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9. It is hard to optimize composition to obtain equally good soft magnetic properties as FINEMET significantly deviating from conventional type alloy. Fe -based alloy of the composition, Fe 74 Cu 0.8 Nb 2.7 Si 15.5 B 7 has been prepared by single roller melt spinning machine. X-ray diffraction studies confirmed that the ribbon is in the amorphous state. Evolution of α- Fe ( Si ) nanograins from amorphous matrix were carried out by isothermal annealing in the temperature range from 550°C to 650°C for 1, 3, 5, 10, 20, 30, 40, 50 and 60 minutes. Frequency spectrum of real and imaginary part of complex initial permeability has been measured for the samples at different annealing conditions. Short time annealing has been proved to be more efficient than long time annealing for the samples of this composition for most of the annealing temperatures.


1999 ◽  
Vol 577 ◽  
Author(s):  
M. Kopcewicz ◽  
A. Grabias ◽  
B. Idzikowski

ABSTRACTFormation of the nanocrystalline bcc Fe phase due to thermal treatment of the amorphous Fe80M7B12Cu1 (M: Ti, Ta, Nb, Mo) precursors is studied by the Mössbauer and differential scanning calorimetry techniques. The dependence of the formation of the bcc Fe phase on the alloy composition is discussed. In order to determine the optimal soft magnetic properties of these nanocrystalline alloys the rf-Mössbauer technique is used in which rf collapse effect induced by a radio-frequency (rf) magnetic field is employed. It was found that anisotropy fields in the nanocrystalline phase were smaller in Nb- and Mo-containing alloys as compared to the alloys which contain Ti or Ta. Variations of the anisotropy field vs. alloy composition and annealing temperature are discussed in detail.


2016 ◽  
Vol 61 (1) ◽  
pp. 445-450
Author(s):  
K. Błoch

This paper presents studies relating to the structure, soft magnetic properties and thermal stability of the following bulk amorphous alloys: Fe61Co10Ti3-xY6+xB20 (x = 0, 1). On the basis of the performed X-ray diffraction studies and Mössbauer spectroscopy, it was found that investigated samples were amorphous in the as-cast state. The DSC curve obtained for Fe61Co10Ti2Y7B20 alloy exhibited one exothermic peak, while for the Fe61Co10Ti3Y6B20 sample, two peaks were distinguishable. The change in the chemical structure of the investigated alloys has a major effect on their soft magnetic properties; especially on coercivity and saturation magnetization. On the basis of the magnetization curves analysis, the spin wave stiffness parameter Dsp were determined for the investigated alloys.


2003 ◽  
Vol 788 ◽  
Author(s):  
Shashishekar Basavaraju ◽  
Ian Baker

ABSTRACTNanocrystalline stoichiometric FeCo powders were prepared by mechanically alloying elemental Fe and Co powders using a high-energy ball mill. The microstructural evolution was studied as a function of milling time and subsequent annealing using X-ray diffractometry and differential scanning calorimetry. The magnetic behavior of the specimens was characterized using a vibrating sample magnetometer and a magnetic force microscope. A reduction in grain size coupled with an increase in coercivity was observed as function of milling time. The smallest grain size of 4 nm, which exhibited a coercivity of 122 Oe and magnetization of 2 T at room temperature, was obtained after 240 h of milling. The reduction in grain size during milling was not accompanied by enhanced soft magnetic properties.


Author(s):  
Lijuan Yao ◽  
Man Zhu ◽  
Kun Li ◽  
Zengyun Jian ◽  
Fang’e Chang

Abstract The glass-forming ability (GFA), nanocrystallisation, electrical resistivity and soft magnetic properties of (Fe1-xCox)79Nb3B18 (x = 0, 0.15, 0.3, 0.45, 0.6, 0.75) glassy alloys were investigated. We found that the substitution of Fe by Co is beneficial for improving the GFA. As-spun (Fe0.55Co0.45)79Nb3B18 glassy alloys show the best GFA, along with excellent soft magnetic properties in the supercooled liquid region, with a saturation magnetisation and coercivity of 140 A · m2 · kg-1 and 19.9 A · m-1, respectively, at 60 K. With increasing Co content, the electrical resistivity initially decreases rapidly, and then fluctuates around approximately 70 ± 4 μΩ cm. With increasing the annealing temperature, the saturation magnetisation improves initially, but then decreases for the (Fe0.4Co0.6)79Nb3B18 alloy, and the coercivity does not significantly improve. These newly developed FeCoNbB multicomponent alloys exhibit appreciable GFA, good magnetic properties and low material cost, and they can serve as a promising soft magnetic material for use in industrial applications.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 726
Author(s):  
Tymon Warski ◽  
Adrian Radon ◽  
Przemyslaw Zackiewicz ◽  
Patryk Wlodarczyk ◽  
Marcin Polak ◽  
...  

The effect of substitution of Fe by Cu on the crystal structure and magnetic properties of Fe72−xNi8Nb4CuxSi2B14 alloys (x = 0.6, 1.1, 1.6 at.%) in the form of ribbons was investigated. The chemical composition of the materials was established on the basis of the calculated minima of thermodynamic parameters: Gibbs free energy of amorphous phase formation ΔGamorph (minimum at 0.6 at.% of Cu) and Gibbs free energy of mixing ΔGmix (minimum at 1.6 at.% of Cu). The characteristic crystallization temperatures Tx1onset and Tx1 of the alpha-iron phase together with the activation energy Ea for the as-spun samples were determined by differential scanning calorimetry (DSC) with a heating rate of 10–100 °C/min. In order to determine the optimal soft magnetic properties, the wound cores were subjected to a controlled isothermal annealing process in the temperature range of 340–640 °C for 20 min. Coercivity Hc, saturation induction Bs and core power losses at B = 1 T and frequency f = 50 Hz P10/50 were determined for all samples. Moreover, for the samples with the lowest Hc and P10/50, the magnetic losses were determined in a wider frequency range 50 Hz–400 kHz. The real and imaginary parts of the magnetic permeability µ′, µ″ along with the cut-off frequency were determined for the samples annealed at 360, 460, and 560 °C. The best soft magnetic properties (i.e., the lowest value of Hc and P10/50) were observed for samples annealed at 460 °C, with Hc = 4.88–5.69 A/m, Bs = 1.18–1.24 T, P10/50 = 0.072–0.084 W/kg, µ′ = 8350–10,630 and cutoff frequency at 8–9.3 × 104 Hz. The structural study of as-spun and annealed ribbons was carried out using X-ray diffraction (XRD) and a transmission electron microscope (TEM).


2019 ◽  
Vol 70 (7) ◽  
pp. 2699-2702
Author(s):  
Joanna Gondro

This paper presents studies relating to the structure and soft magnetic properties of the bulk amorphous alloys Fe55Co15W2Y8B20. Samples were made using the method of injecting a liquid alloy into a copper water-cooled mold in the form of plates. The structure and microstructure were examined using X-ray diffractometry. Magnetic properties were investigated from static and dynamic measurements. For the samples, the core losses were measured. The influence of structure defects on the magnetization process in strong magnetic fields was also investigated. For this purpose, the theory developed by H. Kronm�ller was used. It was shown that the magnetization process in strong magnetic fields is associated with two-dimensional defects, so-called pseudo-location dipoles.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2229
Author(s):  
Katarzyna Filipecka ◽  
Piotr Pawlik ◽  
Andrzej Kozdraś ◽  
Waldemar Kaszuwara ◽  
Jarosław Ferenc ◽  
...  

The aim of the present work was to investigate an influence of W addition on the phase constitution, microstructure and magnetic properties of the Pr9Fe65WxB26-x (where: x = 2, 4, 6, 8) alloy ribbons. Ribbons were obtained using the melt-spinning technique under low pressure of Ar. The as-cast samples were fully amorphous and revealed soft magnetic properties. These facts were confirmed by X-ray diffractometry, Mössbauer spectroscopy and magnetic measurements. Differential scanning calorimetry and differential thermal analysis allowed us to determine the thermal stability parameters of the amorphous phase. The Kissinger plots were constructed in order to calculate the activation energies for crystallization. Heat treatment carried out at various temperatures caused changes in the phase constitution and magnetic properties of the alloys. The phase analysis has shown the presence of the hard magnetic Pr2Fe14B and paramagnetic Pr1+xFe4B4 phases. Additionally, for the x = 2 and x = 6 alloys, a crystallization of soft magnetic Fe2B and α-Fe phases was observed. The Mössbauer spectroscopy allowed us to determine the volume fractions of constituent phases formed during annealing. The microstructure of annealed ribbons was observed using transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document