scholarly journals Investigations of Temperatures of Phase Transformations of Low-Alloyed Reinforcing Steel within the Heat Treatment Temperature Range

2017 ◽  
Vol 62 (2) ◽  
pp. 891-897 ◽  
Author(s):  
T. Kargul

AbstractThe paper presents the results of DSC analysis of steel B500SP produced in the process of continuous casting, which is intended for the production reinforcement rods with high ductility. Studies were carried out in the temperature range below 1000°C in a protective atmosphere of helium during samples heating program. The main objective of the study was to determine the temperature range of austenite structure formation during heating. As a result of performed experiments:Ac1s,Ac1f– temperatures of the beginning and finish of the eutectoid transformation,Ac2– Curie temperature of the ferrite magnetic transformation and the temperature Ac3of transformation of proeutectoid ferrite into austenite were elaborated. Experimental determination of phase transformations temperatures of steel B500SP has great importance for production technology of reinforcement rods, because good mechanical properties of rods are formed by the special thermal treatment in Tempcore process.

2015 ◽  
Vol 229 ◽  
pp. 89-98
Author(s):  
Roman Przeliorz ◽  
Andrzej Kiełbus

Following article summarizes results of the researches concerning influence of heating and cooling rate on the phase transformations temperatures in EV31A magnesium alloy. Particular attention has been paid to calibration aspects of the temperature measurement as well as cooling and heating rates in protective atmosphere. The researches were conducted on Multi HTC calorimeter, provided by Setaram company. The samples were heated up to liquidus temperature with controlled rates of: 2.5°C/min, 5°C/min, 10°C/min, 15°C/min and 20°C/min. Just after melting, the specimens were cooled with the same rates. Equilibrium temperatures of phase transformations were calculated by extrapolation to zero heating/cooling rate. Considerable difference between melting point (during heating) and solidification temperature (during cooling) were noticed on cooling/heating curves. The alloy specific heat has also been calculated.


Author(s):  
P. Moine ◽  
G. M. Michal ◽  
R. Sinclair

Premartensitic effects in near equiatomic TiNi have been pointed out by several authors(1-5). These include anomalous contrast in electron microscopy images (mottling, striations, etc. ),diffraction effects(diffuse streaks, extra reflections, etc.), a resistivity peak above Ms (temperature at which a perceptible amount of martensite is formed without applied stress). However the structural changes occuring in this temperature range are not well understood. The purpose of this study is to clarify these phenomena.


Author(s):  
David M Hudson

Abstract Freshwater crustaceans are distributed throughout the montane and lowland areas of Colombia, and are therefore a useful indicator group for how aquatic species will respond to climate change. As such, metabolic determination of physiological performance was evaluated for the Colombian pseudothelphusid crab, Neostrengeria macropa (H. Milne Edwards, 1853), over a temperature range inclusive of current temperatures and those predicted by future scenarios in the plateau around the city of Bogotá, namely from 8 °C to 30 °C. The performance results mostly aligned with previous exploratory behavioral determination of the ideal temperature range in the same species, although the metabolism increased at the highest temperature treatments, a point when exploratory behavior declined. These results indicate that this species of montane crab behaviorally compensates for increased thermal stress by decreasing its physical activity, which could have negative predator-prey consequences with changes to community structure as different species undergo climate-mediated geographic range shifts in the region. As this species is endemic to the plateau surrounding Bogotá, it also experiences a number of other stressors to its survival, including infrastructure development and invasive species.


1980 ◽  
Vol 75 (2) ◽  
pp. 207-222 ◽  
Author(s):  
M.W Pershing ◽  
G Bambakidis ◽  
J.F Thomas ◽  
R.C Bowman

2021 ◽  
Author(s):  
Stephanie Jones ◽  
Mohit Singh ◽  
Denis Duft ◽  
Alexei Kiselev ◽  
Thomas Leisner

<p>The impact of atmospheric aerosol on the climate remains poorly understood. Organic aerosol makes up a significant fraction of total aerosol and is prevalent throughout the atmosphere. It can exist as a liquid, semi-solid or amorphous solid. The viscosity of organic aerosol will have an impact on transformations that organic aerosol will undergo during its lifetime such as evaporation and growth, heterogeneous and photochemical reactions as well as the ability to act as an ice nucleating particle.  Therefore, it is of key importance to be able to determine aerosol viscosity over a range of atmospherically relevant conditions in order to better understand the impact of organic aerosol on the climate.</p> <p>Here we report proof of concept viscosity measurements of water droplets levitated in an electrodynamic balance over a range of temperatures. Charged droplets are levitated in a temperature and relative humidity-controlled environment allowing properties over a temperature range of 300 to 220 K to be studied. As the droplets evaporate they reach a point where Coulomb instabilities are induced resulting in droplet oscillations. The relaxation of these oscillations can then be probed to determine the droplet viscosity. Future work will involve determination of the viscosity of different types of organic aerosol over a broad temperature range.</p>


2021 ◽  
pp. 35-40
Author(s):  
Denis Y. Kutovoy ◽  
Igor A. Yatsenko ◽  
Vladimir B. Yavkin ◽  
Aydar N. Mukhametov ◽  
Petr V. Lovtsov ◽  
...  

The actual problem of the possibility of using the equations of state for the gas phase of natural gas at temperatures below 250 K is considered. To solve it, the compressibility coefficients of natural gas obtained experimentally with high accuracy are required. The technique was developed and experimental study was carried out of compressibility factor aiming expanding temperature range of the state equations GERG-2004 and AGA8-DC92. The proposed technique is based on the fact that to assess the applicability of the equation of state, it is sufficient to obtain the relative value of the compressibility coefficient and not to determine its absolute value. The technique does not require complex equipment and provides high accuracy. The technique was tested on nitrogen, argon, air and methane. Uncertainty of determination of the compressibility factor is not greater than 0.1 %. For two different compositions of natural gas, obtained experimental data were demonstrated that the equations of state GERG-2004 and AGA8-92DC provide uncertainty of the calculation of the compressibility coefficient within 0.1 % in the temperature range from 220 K to 250 K and pressure below 5 MPa.


1982 ◽  
Vol 60 (14) ◽  
pp. 1853-1856 ◽  
Author(s):  
Eva I. Vargha-Butler ◽  
A. Wilhelm Neumann ◽  
Hassan A. Hamza

The specific heats of five polymers were determined by differential scanning calorimetry (DSC) in the temperature range of 300 to 360 K. The measurements were performed with polymers in the form of films, powders, and granules to clarify whether or not DSC specific heat values are dependent on the diminution of the sample. It was found that the specific heats for the bulk and powdered form of the polymer samples are indistinguishable within the error limits, justifying the determination of specific heats of powders by means of DSC.


Sign in / Sign up

Export Citation Format

Share Document