scholarly journals UOE Pipe Manufacturing Process Simulation: Equipment Designing and Construction

2017 ◽  
Vol 69 (1) ◽  
pp. 100-112
Author(s):  
Dmitri Delistoian ◽  
Mihael Chirchor

Abstract UOE pipe manufacturing process influence directly on pipeline resilience and operation capacity. At present most spreaded pipe manufacturing method is UOE. This method is based on cold forming. After each technological step appears a certain stress and strain level. For pipe stress strain study is designed and constructed special equipment that simulate entire technological process.UOE pipe equipment is dedicated for manufacturing of longitudinally submerged arc welded DN 400 (16 inch) steel pipe.

2018 ◽  
Vol 27 (2018) ◽  
pp. 65-70
Author(s):  
Dmitri Delistoian ◽  
Mihael Chircor ◽  
Timur Chris

UOE pipe manufacturing processes influence directly on pipeline resilience and operation capacity. At present, most spread pipe manufacturing method is UOE. This kind of manufacturing process is based on cold forming principle. To avoid appearance of unwanted effects, the need to know the level of strains resulted after every technological step appeared. For this case a manufacturing process by using special designed equipment is simulated. The experimental simulation presented in this paper is performed for L 415MB (X60) steel plate with 7.9 mm thickness and a width of 1250 mm. As a result a DN 400 (16 inch) pipe is obtained. Manufacturing process is monitored by Digital 3D Image Correlation System Q-400 and the principle of operation is based on Digital Image Correlation.


Author(s):  
Rita G. Toscano ◽  
Javier Raffo ◽  
Marcelo Fritz ◽  
Ronaldo C. Silva ◽  
Joshua Hines ◽  
...  

It has been demonstrated in previous work that, for deepwater applications, the cold forming processes involved in UOE pipe manufacturing significantly reduces pipe collapse strength. To improve the understanding of these manufacturing effects, Tenaris has embarked on a program to model the phases of the UOE manufacturing process using finite element analysis simulations. Phase 1 of this work, presented previously in the literature [1], formulated the basis for the model development and described the 2D approach taken to model the various steps of manufacture. This paper presents the results of the Phase 2 work, and includes a description of the enhancements made to the modeling approach, a summary of the full-scale collapse testing performed at C-FER, and a comparison of the model predictions to the test results. Variations are made to the simulated manufacturing process in order to evaluate the sensitivity of collapse strength to key parameters. Based on the modeling approach taken, the findings of the Phase 2 work have shown that the deterioration of the collapse pressure diminishes with increasing O-press compression. The residual stress value is the most sensitive parameter when the strain hardening varies. It increases with the compression ratio and with the strain hardening value. In addition, given the assumed compression ratio of the test pipes, predictive behavior of the test results was found to be acceptable.


Author(s):  
Chris Timms ◽  
Luciano Mantovano ◽  
Hugo A. Ernst ◽  
Rita Toscano ◽  
Duane DeGeer ◽  
...  

It has been demonstrated in previous work that, for deepwater applications, the cold forming process involved in UOE pipe manufacturing significantly reduces pipe collapse strength. To improve the understanding of these effects, Tenaris has embarked on a program to model the stages of the UOE manufacturing process using finite element methods. Previous phases of this work formulated the basis for model development and described the 2D approach taken to model the various stages of manufacture. More recent developments included some modeling enhancements, sensitivity analyses, and comparison of predictions to the results of full-scale collapse testing performed at C-FER. This work has shown correlations between manufacturing parameters and collapse pressure predictions. The results of the latest phase of the research program are presented in this paper. This work consists of full-scale collapse testing and extensive coupon testing on samples collected from various stages of the UOE pipe manufacturing process including plate, UO, UOE, and thermally-aged UOE. Four UOE pipe samples manufactured with varying forming parameters were provided by Tenaris for this test program along with associated plate and UO samples. Full-scale collapse and buckle propagation tests were conducted on a sample from each of the four UOE pipes including one that was thermally aged. Additional coupon-scale work included measurement of the through-thickness variation of material properties and a thermal ageing study aimed at better understanding UOE pipe strength recovery. The results of these tests will provide the basis for further refinement of the finite element model as the program proceeds into the next phase.


2021 ◽  
Author(s):  
GEORGE BARLOW ◽  
MATHEW SCHEY ◽  
SCOTT STAPLETON

Modeling composites can be an effective way to understand how a part will perform without requiring the destruction of costly specimens. By combining artificial fiber entanglement with manufacturing process simulation, a method was developed to create fiber bundle models using entanglement to control the fiber volume fraction. This fiber entanglement generation uses three parameters, probability of swapping (p_(r_S )), swapping radius standard deviation (r_(σ_S )), and the swapping plane spacing (l_S), to control the amount of entanglement within the fiber bundle. A parametric study was conducted and found that the more entanglement within a fiber bundle, the more compression mold pressure required to compact the fiber bundle to the same fiber volume fraction as that required for a less entangled bundle. This artificial fiber entanglement and manufacturing process simulation method for creating fiber bundles shows the potential to be able to create bundles with controlled final volume fraction using a desired mold compression pressure.


2015 ◽  
Vol 137 (8) ◽  
Author(s):  
Longling Fan ◽  
Jing Yao ◽  
Chun Yang ◽  
Dalin Tang ◽  
Di Xu

Methods to quantify ventricle material properties noninvasively using in vivo data are of great important in clinical applications. An ultrasound echo-based computational modeling approach was proposed to quantify left ventricle (LV) material properties, curvature, and stress/strain conditions and find differences between normal LV and LV with infarct. Echo image data were acquired from five patients with myocardial infarction (I-Group) and five healthy volunteers as control (H-Group). Finite element models were constructed to obtain ventricle stress and strain conditions. Material stiffening and softening were used to model ventricle active contraction and relaxation. Systolic and diastolic material parameter values were obtained by adjusting the models to match echo volume data. Young's modulus (YM) value was obtained for each material stress–strain curve for easy comparison. LV wall thickness, circumferential and longitudinal curvatures (C- and L-curvature), material parameter values, and stress/strain values were recorded for analysis. Using the mean value of H-Group as the base value, at end-diastole, I-Group mean YM value for the fiber direction stress–strain curve was 54% stiffer than that of H-Group (136.24 kPa versus 88.68 kPa). At end-systole, the mean YM values from the two groups were similar (175.84 kPa versus 200.2 kPa). More interestingly, H-Group end-systole mean YM was 126% higher that its end-diastole value, while I-Group end-systole mean YM was only 29% higher that its end-diastole value. This indicated that H-Group had much greater systole–diastole material stiffness variations. At beginning-of-ejection (BE), LV ejection fraction (LVEF) showed positive correlation with C-curvature, stress, and strain, and negative correlation with LV volume, respectively. At beginning-of-filling (BF), LVEF showed positive correlation with C-curvature and strain, but negative correlation with stress and LV volume, respectively. Using averaged values of two groups at BE, I-Group stress, strain, and wall thickness were 32%, 29%, and 18% lower (thinner), respectively, compared to those of H-Group. L-curvature from I-Group was 61% higher than that from H-Group. Difference in C-curvature between the two groups was not statistically significant. Our results indicated that our modeling approach has the potential to determine in vivo ventricle material properties, which in turn could lead to methods to infer presence of infarct from LV contractibility and material stiffness variations. Quantitative differences in LV volume, curvatures, stress, strain, and wall thickness between the two groups were provided.


2002 ◽  
Vol 736 ◽  
Author(s):  
Margaret Orth

ABSTRACTIn order for electronic textiles to truly qualify as textiles, they must maintain one of the intrinsic qualities of textiles, flexibility, or the ability to resist permanent deformation under bending, lateral stress and strain. Flexibility will allow electric textiles to be intimate, soft, wearable, conformable and durable. Unfortunately, flexibility is poorly understood by many researchers who come from a traditional electronics background. This paper presents some common terminology of textiles, and different approaches to understanding flexibility in fibers and yarns. Because one of the most mechanically stressful textile manufacturing process is machine sewing and embroidery, this paper defines the necessary properties of machine sewable yarns and demonstrates a formal Curl Test for judging the sewability and flexibility of stainless steel yarns. This paper also examines flexibility in yarns and fibers, historically and based on a mathematical model and more qualitative properties.


Author(s):  
Yu-yuan Hsieh ◽  
Ming-Yi Tsai ◽  
Zhi-Zhe Xu

Abstract The study has developed a new machining process for the side seal components of gray cast iron alloy of rotor engine, which is different from the traditional WEDM (wire electrical discharge machining) process. The new manufacturing process (milling + grinding process) will save 78% of the cost and 83% of the time for making each side seal component, and the accuracy of the average surface roughness of the component will be 2.1 times that of the traditional manufacturing method. If the components are polished with a self-made polishing rod, the accuracy will be increased by almost 20 times compared with the new manufacturing process.


2014 ◽  
Vol 59 (2) ◽  
pp. 443-446 ◽  
Author(s):  
J. Borowiecka-Jamrozek ◽  
J. Lachowski

Abstract The paper presents results of computer simulations of the stress/strain field built up in a cobalt matrix diamond impregnated saw blade segment during its fabrication and after loading the protruding diamond with an external force. The main objective of this work was to create better understanding of the factors affecting retention of diamond particles in a metallic matrix of saw blade segments, which are produced by means of the powder metallurgy technology. The effective use of diamond impregnated tools strongly depends on mechanical and tribological properties of the matrix, which has to hold the diamond grits firmly. The diamond retention capability of the matrix is affected in a complex manner by chemical or mechanical interactions between the diamond crystal and the matrix during the segment manufacture. Due to the difference between the thermal expansion coefficients of the diamond and metallic matrix, a complex stress/strain field is generated in the matrix surrounding each diamond crystal. It is assumed that the matrix potential for diamond retention can be associated with the amount of the elastic and plastic deformation energy and the size of the deformation zone occurring in the matrix around diamonds. The stress and strain fields generated in the matrix were calculated using the Abaqus software. It was found that the stress and strain fields generated during segment fabrication change to a large extent as the diamond crystal emerges from the cobalt matrix to reach its working height of protrusion.


Sign in / Sign up

Export Citation Format

Share Document