Defining Flexibility and Sewability in Conductive Yarns

2002 ◽  
Vol 736 ◽  
Author(s):  
Margaret Orth

ABSTRACTIn order for electronic textiles to truly qualify as textiles, they must maintain one of the intrinsic qualities of textiles, flexibility, or the ability to resist permanent deformation under bending, lateral stress and strain. Flexibility will allow electric textiles to be intimate, soft, wearable, conformable and durable. Unfortunately, flexibility is poorly understood by many researchers who come from a traditional electronics background. This paper presents some common terminology of textiles, and different approaches to understanding flexibility in fibers and yarns. Because one of the most mechanically stressful textile manufacturing process is machine sewing and embroidery, this paper defines the necessary properties of machine sewable yarns and demonstrates a formal Curl Test for judging the sewability and flexibility of stainless steel yarns. This paper also examines flexibility in yarns and fibers, historically and based on a mathematical model and more qualitative properties.

2013 ◽  
Vol 20 (1) ◽  
pp. 35
Author(s):  
Marisa Mifta Huda ◽  
Erwin Siregar ◽  
Nada Ismah

Deformasi slot braket Stainless Steel akan mempengaruhi gaya yang diaplikasikan kepada gigi.Tujuan penelitian adalah untuk mengetahui deformasi slot braket dari lima merek braket yaitu 3M, Biom, Versadent, Ormco dan Shinye akibat gaya torque kawat Beta Titanium 0.021x0.025 inci dengan sudut puntir 45° dan besar gaya torque dengan sudut puntir 30° dan 45°. Penelitian juga bertujuan untuk membandingkan deformasi dan besar gaya torque antara kelima merek braket. Penelitian dilakukan pada 50 braket Stainless Steel Edgewise dari lima kelompok merek braket (n=10) dilem ke akrilik. Masing-masing braket dilakukan dua tahapan pengukuran yaitu pengukuran deformasi braket dengan menghitung rerata tinggi slot braket dengan mikroskop stereoskopi sebelum dan sesudah uji torque dan pengukuran besar gaya torque dengan alat uji torque. Hasil analisa statistik menunjukkan terdapat deformasi slot braket pada kelima merek braket dengan deformasi permanen secara klinis pada braket Biom (2,79 µm) dan Shinye (2,29 µm). Besar gaya torque pada kelima braket dari yang paling besar yaitu 3M, Ormco, Versadent, Shinye dan Biom. Perbandingan deformasi slot braket dan besar gaya torque antara kelima braket adalah terdapat perbedaan deformasi slot braket antara kelima merek braket kecuali antara 3M dan Ormco dan Biom dan Shinye dan terdapat perbedaan besar gaya torque antara kelima braket dengan sudut puntir 30° (kecuali 3M dan Ormco) dan 45°. Kesimpulan, Komposisi logam dan proses pembuatan braket merupakan faktor yang mempengaruhi terjadinya deformasi slot braket dan besar gaya torque. Proses pembuatan dengan metode MIM dan komposisi logam AISI 303 dan 17-4PH menurunkan risiko deformasi.Slot Deformation in Various Stainless Steel Bracket Products due to The Torqueing Force of Beta Titanium Wire. Stainless Steel bracket slot deformation affects force applied to teeth. The research aims to determine slot deformation of five different bracket brands namely, 3M, Biom, Versadent, Ormco and Shinye due to torque of Beta Titanium wire 0.021 x 0.025 inch with torsional angle of 45° and the amount of torque with torsional angle of 30° and 45°. The research also attempts to compare the deformation and amount of torque among all five bracket brands. Fifity Stainless Steel Edgewise brackets from five bracket group brands (n=10) were attached on acrylic. Bracket slot measurement was carried out in two stages: firstly, deformation measurement by calculating average bracket slot height with stereoscopy microscope before and after application of torque; and secondly, measurement of torque with a torque measurement apparatus. Statistical analysis showed that there are slot deformations on the five bracket brands with clinical permanent deformation on Biom (2,79 µm) and Shinye (2,29 µm). The amount of torque on the five bracket brands from the highest is 3M, Ormco, Versadent, Shinye and Biom. From correlation assessment between bracket slot deformation and amount of torque in the five brands, a difference is found in the deformation in five brands except 3M, Ormco, Biom and Shinye. There is a difference in the amount of torque between the five brands with torsional angle of 30° (except 3M and Ormco) and 45°. It is concluded that metal compositions and manufacturing process are the factors that influence the occurrence of deformation bracket slot and the amount of torque. Manufacturing process using MIM and metal compositions of AISI 303 and 17-4 PH reduce the risk of deformation.


2013 ◽  
Vol 20 (1) ◽  
pp. 21
Author(s):  
Atika Zairina ◽  
Erwin Siregar ◽  
Nia Ayu Ismaniati

Deformasi slot braket dapat mengurangi besar gaya torque  yang akan dihantarkan ke gigi dan jaringan pendukungnya. Beberapa braket stainless steel yang beredar dipasaran belum pernah diteliti kualitasnya dalam perawatan ortodonsi. Tujuan penelitian adalah untuk membandingkan besar gaya torque akibat sudut puntir 30° 45°  kawat stainless steel dan deformasi slot permanen akibat gaya torque tersebut antara kelompok merk braket (3M, Biom, Versadent, Ormco dan Shinye). Penelitian dilakukan pada lima puluh braket stainless steel edgewise dari lima kelompok merk braket (n=10) di lem ke akrilik. Masing-masing braket dilakukan pengukuran tinggi slot dengan mikroskop stereoskopi lalu dipasang ke alat uji torque yang sudah dibuat untuk penelitian ini. Setelah dilakukan uji torque, braket di ukur kembali tinggi slotnya dan dibandingkan dengan pengukuran sebelumnya untuk mengetahui adanya deformasi slot. Hasil analisis statistik menunjukkan perbedaan bermakna besar gaya torque pada sudut puntir 30° dan 45° antara Biom dan Shinye dengan Omrco. Gaya torque paling besar yaitu pada merk braket 3M (30°= 442,12 gmcm dan 45°= 567,99 gmcm), sedangkan yang terkecil adalah Biom (30°= 285,50 gmcm, 45°=361,38 gmcm). Perbedaan deformasi slot braket terjadi hampir pada semua kelompok merk braket. Deformasi slot braket hanya terjadi pada merk braket Biom (2,82 µm) dan Shinye (2,52 µm). Kesimpulan, salah satu faktor yang mempengaruhi besar gaya torque dan terjadinya deformasi slot yaitu komposisi dan proses manufaktur dari braket stainless steel. Proses manufaktur yang tidak sesuai standar dapat menyebabkan kualitas braket yang buruk. Deformasi slot permanen dalam penelitian ini terjadi pada merek braket Biom dan Shinye.Slot Deformation of Various Stainless Steel Bracket Due to Torque Expression On The Wire. Bracket slot deformation can reduce the amount of torque that will be transmitted to teeth and supporting tissues. The quality of some stainless steel brackets in the market is still questionable for orthodontic treatments. This research aims to compare the amount of torque expression due to torsion angle of 30° and 45° at the stainless steel wire and bracket slot permanent deformation caused by the torque in each examined bracket brands (3M, Biom, Versadent, Ormco and Shinye). Fifty Stainless Steel Edgewise brackets from five different brands (n = 10) were attached onto an acrylic. Each bracket slot width was measured with a stereoscopic microscope and then mounted onto a torque apparatus that had been prepared for this study. Once the torque test was done, the width of bracket slot was re-measured to determine if there was a difference from initial bracket slot width at 45°. The results of ANOVA showed significant differences in the amount of torque at torsion angle of 30°and 45° between Biom and Shinye with Omrco. The 3M transmitted the highest load (30°= 442,12 gmcm and 45°= 567,99 gmcm), while the lowest was of Biom (300  = 285,50 gmcm and 450 = 361,38 gmcm). Differences in slot bracket deformation were found virtually in all groups of bracket brands. Deformation of bracket slots occurs only in Biom (2.82 µm) and Shinye (2.52 µm). From the observation, it is concluded that one of the major factors that affect torque and deformation of bracket slot is composition and manufacturing process of the stainless steel brackets. Manufacturing process that does not meet the standard can lead to a poor quality bracket. Permanent slot deformation in this study occurrs with Biom and Shinye bracket brands.


2010 ◽  
Vol 38 (4) ◽  
pp. 286-307
Author(s):  
Carey F. Childers

Abstract Tires are fabricated using single ply fiber reinforced composite materials, which consist of a set of aligned stiff fibers of steel material embedded in a softer matrix of rubber material. The main goal is to develop a mathematical model to determine the local stress and strain fields for this isotropic fiber and matrix separated by a linearly graded transition zone. This model will then yield expressions for the internal stress and strain fields surrounding a single fiber. The fields will be obtained when radial, axial, and shear loads are applied. The composite is then homogenized to determine its effective mechanical properties—elastic moduli, Poisson ratios, and shear moduli. The model allows for analysis of how composites interact in order to design composites which gain full advantage of their properties.


1975 ◽  
Vol 10 (1) ◽  
pp. 214-223
Author(s):  
N.S. Wei ◽  
G.W. Heinke

Abstract This paper presents bench scale experimental results on the electrolysis of raw domestic wastewater. Studies carried out with consumable electrodes are discussed. A mathematical model of a small electrolytic sewage treatment unit for individual household application is developed. The energy consumption and cost of such a device are discussed. Electrolysis can be described as a process in which chemical reactions are induced at each electro-liquid interface by applying an external electrical energy source to a system of electrodes immersed in a liquid. This paper deals only with electrolysis where a direct current power supply is used as the energy source. The process is governed by Faraday' s two laws on electrochemistry. The fundamental process parameter is the electrical charge density, measured as coulombs per litre (c/1) of wastewater treated. There are two basic types of electrolysis depending on the choice of anode material. When the anode is made of dissolvable metallic material such as iron, stainless steel and aluminum, the metal dissolves and goes into the sewage as metallic ions and forms hydrated metallic oxides which act as flocculating agents. The amount of metal dissolved is proportional to the quantity of electrical charges supplied to the system. Results from a series of batch experiments showed that electrolysis with consumable electrodes is capable of removing significant amounts of organic pollutants. Total organic carbon (TOC) removal was found to be a function of charge density. Phosphate removal efficiency of 90 percent or higher was achieved at a relatively low charge density of 240 coulombs per litre with either iron or stainless steel anodes. A mathematical model was derived in the conceptual design of a household electrolytic treatment unit. The model incorporates variables such as decomposition voltage of the electrodes and electrical conductivity of the wastewater as well as the physical configuration of the electrolytic cell. The energy requirement of such a unit can be calculated from the model. It is suggested in this paper that an electrolytic waste treatment unit could be an alternative to the septic tank and tile bed system in areas where the latter is not applicable due to poor soil and terrain conditions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Atena Ghasemabadi ◽  
Nahid Soltanian

AbstractThis paper presents a mathematical model that examines the impacts of traditional and modern educational programs. We calculate two reproduction numbers. By using the Chavez and Song theorem, we show that backward bifurcation occurs. In addition, we investigate the existence and local and global stability of boundary equilibria and coexistence equilibrium point and the global stability of the coexistence equilibrium point using compound matrices.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3390
Author(s):  
Željko Knezić ◽  
Željko Penava ◽  
Diana Šimić Penava ◽  
Dubravko Rogale

Electrically conductive yarns (ECYs) are gaining increasing applications in woven textile materials, especially in woven sensors suitable for incorporation into clothing. In this paper, the effect of the yarn count of ECYs woven into fabric on values of electrical resistance is analyzed. We also observe how the direction of action of elongation force, considering the position of the woven ECY, effects the change in the electrical resistance of the electrically conductive fabric. The measurements were performed on nine different samples of fabric in a plain weave, into which were woven ECYs with three different yarn counts and three different directions. Relationship curves between values of elongation forces and elongation to break, as well as relationship curves between values of electrical resistance of fabrics with ECYs and elongation, were experimentally obtained. An analytical mathematical model was also established, and analysis was conducted, which determined the models of function of connection between force and elongation, and between electrical resistance and elongation. The connection between the measurement results and the mathematical model was confirmed. The connection between the mathematical model and the experimental results enables the design of ECY properties in woven materials, especially textile force and elongation sensors.


2018 ◽  
Vol 89 (5) ◽  
pp. 881-890 ◽  
Author(s):  
Su Liu ◽  
Yanping Liu ◽  
Li Li

Conductive yarn is the key factor in fabricating electronic textiles. Generally, three basic fabric production methods (knit, woven, and non-woven) combined with two finishing processes (embroidery and print) are adopted to embed conductive yarns into fabrics to achieve flexible electronic textiles. Conductive yarns with knit structure are the most flexible and effective form of electronic textiles. Electronic textiles present many advantages over conventional electronics. However, in the process of commercialization of conductive knitted fabrics, it is a great challenge to control the complicated resistive networks in conductive knitted fabrics for the purpose of cost saving and good esthetics. The resistive networks in conductive knitted fabrics contain length-related resistance and contact resistance. The physical forms of conductive yarns in different fabrication structures can be very different and, thus, the contact resistance varies greatly in different fabrics. So far, study of controlling the resistive property of conductive fabrics has not been conducted. Therefore, establishing a systematic method for the industry as a reference source to produce wearable electronics is in great demand. During the industrialization of conductive knitted fabrics, engineers can estimate the resistive property of the fabric in advance, which makes the production process more effective and cost efficient. What is more, the resistive distribution in the same area of knitted fabrics can be fully controlled.


1995 ◽  
Vol 03 (03) ◽  
pp. 653-659 ◽  
Author(s):  
J. J. NIETO ◽  
A. TORRES

We introduce a new mathematical model of aneurysm of the circle of Willis. It is an ordinary differential equation of second order that regulates the velocity of blood flow inside the aneurysm. By using some recent methods of nonlinear analysis, we prove the existence of solutions with some qualitative properties that give information on the causes of rupture of the aneurysm.


2003 ◽  
Vol 44 (3) ◽  
pp. 414-420 ◽  
Author(s):  
Daisuke Kuroda ◽  
Takao Hanawa ◽  
Takaaki Hibaru ◽  
Syuji Kuroda ◽  
Masaki Kobayashi ◽  
...  

2015 ◽  
Vol 760 ◽  
pp. 433-438 ◽  
Author(s):  
Ovidiu Blăjină ◽  
Aurelian Vlase ◽  
Marius Iacob

The research in the last decade regarding their cutting machinability have highlighted the insufficiency of the data for establishing of the optimum cutting processing conditions and the optimum cutting regime. The purpose of this paper is the optimization of the tool life and the cutting speed at the drilling of the stainless steels in terms of the maximum productivity. A nonlinear programming mathematical model to maximize the productivity at the drilling of a stainless steel is developed in this paper. The optimum cutting tool life and the associated cutting tool speed are obtained by solving the proposed mathematical model. The use of this productivity model allows greater accuracy in the prediction of the productivity for the drilling of a certain stainless steel and getting the optimum tool life and the optimum cutting speed for the maximum productivity. The obtained results can be used in production activity, in order to increase the productivity of the stainless steels machining. Finally the paper suggests new research directions for the specialists interested in this field.


Sign in / Sign up

Export Citation Format

Share Document