Role of the polypeptide backbone and post-translational modifications in cross-reactivity of Art v 1, the major mugwort pollen allergen

2009 ◽  
Vol 390 (5/6) ◽  
Author(s):  
Petra Gruber ◽  
Gabriele Gadermaier ◽  
Roman Bauer ◽  
Richard Weiss ◽  
Stefan Wagner ◽  
...  

Abstract Artemisia vulgaris (mugwort) is one of the main causes of late summer pollinosis in Europe, with >95% of patients sensitized to the glycoallergen Art v 1. Despite the importance of this allergen, little is known about its cross-reactive behavior. Here we investigated the occurrence of conserved Art v 1 antigenic determinants in sources known to display clinically relevant cross-reactivity with mugwort pollen. For this purpose, monoclonal antibodies specific for a cysteine-stabilized epitope of the Art v 1 defensin domain and for carbohydrates attached to the proline domain were produced by hybridoma and phage display technologies. Using polyclonal Art v 1-specific rabbit sera and antibodies against both the Art v 1 carbohydrate and polypeptide moieties, we could identify cross-reactive structures in pollen from botanically related Asteraceae weeds (Artemisia absinthium, Helianthus annuus and Ambrosia sp.). Homologous allergens were also recognized by IgE from mugwort-sensitized patients and the reactivity could be decreased by serum pre-incubation with natural and recombinant Art v 1. As no cross-reactive structures could be found in foods associated with mugwort pollinosis, we conclude that Art v 1 is poorly involved in mugwort cross-reactivity to food allergens.

2014 ◽  
Vol 70 (2) ◽  
pp. 329-341 ◽  
Author(s):  
Adela Rodríguez-Romero ◽  
Alejandra Hernández-Santoyo ◽  
Deyanira Fuentes-Silva ◽  
Laura A. Palomares ◽  
Samira Muñoz-Cruz ◽  
...  

Endogenous glycosylated Hev b 2 (endo-β-1,3-glucanase) fromHevea brasiliensisis an important latex allergen that is recognized by IgE antibodies from patients who suffer from latex allergy. The carbohydrate moieties of Hev b 2 constitute a potentially important IgE-binding epitope that could be responsible for its cross-reactivity. Here, the structure of the endogenous isoform II of Hev b 2 that exhibits three post-translational modifications, including an N-terminal pyroglutamate and two glycosylation sites at Asn27 and at Asn314, is reported from two crystal polymorphs. These modifications form a patch on the surface of the molecule that is proposed to be one of the binding sites for IgE. A structure is also proposed for the most importantN-glycan present in this protein as determined by digestion with specific enzymes. To analyze the role of the carbohydrate moieties in IgE antibody binding and in human basophil activation, the glycoallergen was enzymatically deglycosylated and evaluated. Time-lapse automated video microscopy of basophils stimulated with glycosylated Hev b 2 revealed basophil activation and degranulation. Immunological studies suggested that carbohydrates on Hev b 2 represent an allergenic IgE epitope. In addition, a dimer was found in each asymmetric unit that may reflect a regulatory mechanism of this plant defence protein.


1982 ◽  
Vol 156 (6) ◽  
pp. 1711-1722 ◽  
Author(s):  
H R MacDonald ◽  
A L Glasebrook ◽  
J C Cerottini

While it is well established that murine cytolytic T lymphocytes (CTL) express the Lyt-2/3 molecular complex on their surface, conflicting results have been reported concerning the role of this complex in CTL activity. In the present study this question was reinvestigated at the clonal level. Although different (H-2b anti-H-2d) CTL clones expressed comparable amounts of Lyt-2/3 molecules, as assessed by quantitative flow microfluorometry, the activity of some clones was inhibited by low doses (10 ng) of monoclonal anti-Lyt-2 or anti-Lyt-3 antibodies (in the absence of complement), whereas other clones were not inhibited by either antibody at doses as high as 5 microgram. Treatment of these clones with doses of trypsin sufficient to cleave Lyt-2/3 antigenic determinants from the cell surface resulted in a similar dissociation: clones that were inhibited by antibodies lost cytolytic activity, whereas "uninhibited" clones were unaffected by trypsin treatment. Moreover, the dissociation observed among different alloreactive clones could be demonstrated with self-H-2-restricted (H-2b anti-MSV) clones exhibiting cross-reactivity with normal H-2d products. The lytic activity of these clones against the relevant syngeneic target cells was unaffected by anti-Lyt-2 antibodies or trypsin, whereas their cross-reactivity on H-2d target cells was abolished by either treatment. These results provide direct evidence for clonal heterogeneity in the requirement for Lyt-2/3 molecules in CTL-mediated lysis. It is proposed that the function of Lyt-2/3 molecules is to stabilize the interaction between CTL receptors and the corresponding antigens on the target cells and that the requirement for such a stabilization is correlated with low number and/or affinity of CTL receptors.


1990 ◽  
Vol 125 (2) ◽  
pp. 301-309 ◽  
Author(s):  
P. Berger ◽  
R. Klieber ◽  
W. Panmoung ◽  
S. Madersbacher ◽  
H. Wolf ◽  
...  

ABSTRACT Discordant results on body fluid levels of human chorionic gonadotrophin (hCG) free α- and β-subunits under physiological and pathophysiological conditions, prompted us to raise a total of 260 monoclonal antibodies (MCA) against free hCG-α, free hCG-β, holo-hCG, human follicle-stimulating hormone and bovine luteinizing hormone; 153 MCA recognizing the human α-subunit and 28 reacting with hCG-β were extensively analysed for their intra- and interspecies cross-reactivity with homologous hormones, and for the compatibility of epitopes recognized by them. The immunological topography of free hCG-α and free hCG-β was resolved by these MCA, and epitope maps were designed. Six antigenic determinants on the free α-chain (α1–α6), clustered in three spatially distinct domains, and seven epitopes on the surface of free hCG-β (β1–β7), could be distinguished. Strikingly, three α-chain epitopes (α4, α5 and α6) were shared between various species, which is in contradiction to the concept of immunological species-specificity of α-subunits. Three determinants were found to be present only on the free subunits but not on holo-hCG (α6, β6 and β7), and only two determinants (β1 and β7) were hormone-specific for hCG. Based on this information, an immunoenzymometric assay for the free α-subunit of human glycoprotein hormones was established, with a sensitivity of 1·3 pg/well and a cross-reactivity with holo-hCG of less than 0·005% Thus this assay provides the basis for detecting free α-subunits in the presence of extremely high levels of holo-hormones, which may assist in elucidating the role of free α-subunits in man. Journal of Endocrinology (1990) 125, 301–309


Nephron ◽  
2021 ◽  
pp. 1-12
Author(s):  
Helene Banoun

Since the reporting of the first cases of coronavirus in China and the publication of the first sequence of SARS-CoV-2 in December 2019, the virus has undergone numerous mutations. In Europe, the spring outbreak (March–April) was followed by a drop in the number of cases and deaths. The disease may have evolved into a milder form. The increase in PCR-positive cases in late summer 2020 did not lead to the expected increase in hospitalizations, ICU admissions, and deaths, based on the severity of the disease in the spring. This difference in disease severity could be due to factors independent of the virus or to the evolution of the virus. This review attempts to identify the mutations that have appeared since the beginning of the pandemic and their role in the temporal evolution of the pandemic. There are a cell and humoral type cross-reactivity in a large part of the population to common cold coronaviruses (HCoVs) and SARS-CoV-2. Evolutionarily important mutations and deletions have emerged in the SARS-CoV-2 genes encoding proteins that interact with the host immune system. In addition, one of the major mutations (in viral polymerase) is logically associated with a higher frequency of mutations throughout the genome. This frequency fluctuates over time and shows a peak at the time when the epidemic was most active. The rate of mutations in proteins involved in the relationship to the immune system continues to increase after the first outbreak. The cross-reactivity on the 1 hand and the viral mutations observed on the other hand could explain the evolution of the pandemic until the summer of 2020, partly due to the evolution of the virus in relation to the host immune system. The immunization campaign began in December 2020: concerns are emerging about a possible escape of the circulating variants vaccines in early 2021. These variants could also escape immunity acquired through infection with the 2020 strains.


Author(s):  
Darja Kanduc

AbstractBy examining the issue of the thromboses and hemostasis disorders associated with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) through the lens of cross-reactivity, it was found that 60 pentapeptides are shared by SARS-CoV-2 spike glycoprotein (gp) and human proteins that— when altered, mutated, deficient or, however, improperly functioning— cause vascular diseases, thromboembolic complications, venous thrombosis, thrombocytopenia, coagulopathies, and bleeding, inter alia. The peptide commonality has a relevant immunological potential as almost all of the shared sequences are present in experimentally validated SARS-CoV-2 spike gp-derived epitopes, thus supporting the possibility of cross-reactions between the viral gp and the thromboses-related human proteins. Moreover, many of the shared peptide sequences are also present in pathogens to which individuals have previously been exposed following natural infection or vaccinal routes, and of which the immune system has stored imprint. Such an immunological memory might rapidly trigger anamnestic secondary cross-reactive responses of extreme affinity and avidity, in this way explaining the thromboembolic adverse events that can associate with SARS-CoV-2 infection or active immunization.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amir Ata Saei ◽  
Christian M. Beusch ◽  
Pierre Sabatier ◽  
Juan Astorga Wells ◽  
Hassan Gharibi ◽  
...  

AbstractDespite the immense importance of enzyme–substrate reactions, there is a lack of general and unbiased tools for identifying and prioritizing substrate proteins that are modified by the enzyme on the structural level. Here we describe a high-throughput unbiased proteomics method called System-wide Identification and prioritization of Enzyme Substrates by Thermal Analysis (SIESTA). The approach assumes that the enzymatic post-translational modification of substrate proteins is likely to change their thermal stability. In our proof-of-concept studies, SIESTA successfully identifies several known and novel substrate candidates for selenoprotein thioredoxin reductase 1, protein kinase B (AKT1) and poly-(ADP-ribose) polymerase-10 systems. Wider application of SIESTA can enhance our understanding of the role of enzymes in homeostasis and disease, opening opportunities to investigate the effect of post-translational modifications on signal transduction and facilitate drug discovery.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 995
Author(s):  
Xiaoyan Hou ◽  
Lijun Qiao ◽  
Ruijuan Liu ◽  
Xuechao Han ◽  
Weifang Zhang

Persistent infection of high-risk human papillomavirus (HR-HPV) plays a causal role in cervical cancer. Regulator of chromosome condensation 1 (RCC1) is a critical cell cycle regulator, which undergoes a few post-translational modifications including phosphorylation. Here, we showed that serine 11 (S11) of RCC1 was phosphorylated in HPV E7-expressing cells. However, S11 phosphorylation was not up-regulated by CDK1 in E7-expressing cells; instead, the PI3K/AKT/mTOR pathway promoted S11 phosphorylation. Knockdown of AKT or inhibition of the PI3K/AKT/mTOR pathway down-regulated phosphorylation of RCC1 S11. Furthermore, S11 phosphorylation occurred throughout the cell cycle, and reached its peak during the mitosis phase. Our previous data proved that RCC1 was necessary for the G1/S cell cycle progression, and in the present study we showed that the RCC1 mutant, in which S11 was mutated to alanine (S11A) to mimic non-phosphorylation status, lost the ability to facilitate G1/S transition in E7-expressing cells. Moreover, RCC1 S11 was phosphorylated by the PI3K/AKT/mTOR pathway in HPV-positive cervical cancer SiHa and HeLa cells. We conclude that S11 of RCC1 is phosphorylated by the PI3K/AKT/mTOR pathway and phosphorylation of RCC1 S11 facilitates the abrogation of G1 checkpoint in HPV E7-expressing cells. In short, our study explores a new role of RCC1 S11 phosphorylation in cell cycle regulation.


2020 ◽  
Vol 22 (1) ◽  
pp. 323
Author(s):  
Ramesh Kumar ◽  
Divya Mehta ◽  
Nimisha Mishra ◽  
Debasis Nayak ◽  
Sujatha Sunil

Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins’ functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.


2021 ◽  
Vol 21 (5) ◽  
Author(s):  
Laura De Marchi ◽  
Andrea Wangorsch ◽  
Gianni Zoccatelli

Abstract Purpose of Review The recent introduction of edible insects in Western countries has raised concerns about their safety in terms of allergenic reactions. The characterization of insect allergens, the sensitization and cross-reactivity mechanisms, and the effects of food processing represent crucial information for risk assessment. Recent Findings Allergic reactions to different insects and cross-reactivity with crustacean and inhalant allergens have been described, with the identification of new IgE-binding proteins besides well-known pan-allergens. Depending on the route of sensitization, different potential allergens seem to be involved. Food processing may affect the solubility and the immunoreactivity of insect allergens, with results depending on species and type of proteins. Chemical/enzymatic hydrolysis, in some cases, abolishes immunoreactivity. Summary More studies based on subjects with a confirmed insect allergy are necessary to identify major and minor allergens and the role of the route of sensitization. The effects of processing need to be further investigated to assess the risk associated with the ingestion of insect-containing food products.


Sign in / Sign up

Export Citation Format

Share Document