scholarly journals Role of Host-Mediated Post-Translational Modifications (PTMs) in RNA Virus Pathogenesis

2020 ◽  
Vol 22 (1) ◽  
pp. 323
Author(s):  
Ramesh Kumar ◽  
Divya Mehta ◽  
Nimisha Mishra ◽  
Debasis Nayak ◽  
Sujatha Sunil

Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins’ functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amir Ata Saei ◽  
Christian M. Beusch ◽  
Pierre Sabatier ◽  
Juan Astorga Wells ◽  
Hassan Gharibi ◽  
...  

AbstractDespite the immense importance of enzyme–substrate reactions, there is a lack of general and unbiased tools for identifying and prioritizing substrate proteins that are modified by the enzyme on the structural level. Here we describe a high-throughput unbiased proteomics method called System-wide Identification and prioritization of Enzyme Substrates by Thermal Analysis (SIESTA). The approach assumes that the enzymatic post-translational modification of substrate proteins is likely to change their thermal stability. In our proof-of-concept studies, SIESTA successfully identifies several known and novel substrate candidates for selenoprotein thioredoxin reductase 1, protein kinase B (AKT1) and poly-(ADP-ribose) polymerase-10 systems. Wider application of SIESTA can enhance our understanding of the role of enzymes in homeostasis and disease, opening opportunities to investigate the effect of post-translational modifications on signal transduction and facilitate drug discovery.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 897
Author(s):  
Ernesto Estrada

Extensive extrapulmonary damages in a dozen of organs/systems, including the central nervous system (CNS), are reported in patients of the coronavirus disease 2019 (COVID-19). Three cases of Parkinson’s disease (PD) have been reported as a direct consequence of COVID-19. In spite of the scarce data for establishing a definitive link between COVID-19 and PD, some hypotheses have been proposed to explain the cases reported. They, however, do not fit well with the clinical findings reported for COVID-19 patients, in general, and for the PD cases reported, in particular. Given the importance of this potential connection, we present here a molecular-level mechanistic hypothesis that explains well these findings and will serve to explore the potential CNS damage in COVID-19 patients. The model explaining the cascade effects from COVID-19 to CNS is developed by using bioinformatic tools. It includes the post-translational modification of host proteins in the lungs by viral proteins, the transport of modified host proteins via exosomes out the lungs, and the disruption of protein-protein interaction in the CNS by these modified host proteins. Our hypothesis is supported by finding 44 proteins significantly expressed in the CNS which are associated with PD and whose interactions can be perturbed by 24 host proteins significantly expressed in the lungs. These 24 perturbators are found to interact with viral proteins and to form part of the cargoes of exosomes in human tissues. The joint set of perturbators and PD-vulnerable proteins form a tightly connected network with significantly more connections than expected by selecting a random cluster of proteins of similar size from the human proteome. The molecular-level mechanistic hypothesis presented here provides several routes for the cascading of effects from the lungs of COVID-19 patients to PD. In particular, the disruption of autophagy/ubiquitination processes appears as an important mechanism that triggers the generation of large amounts of exosomes containing perturbators in their cargo, which would insult several PD-vulnerable proteins, potentially triggering Parkinsonism in COVID-19 patients.


2013 ◽  
Vol 450 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Shankha Satpathy ◽  
Arash Nabbi ◽  
Karl Riabowol

The five human ING genes encode at least 15 splicing isoforms, most of which affect cell growth, differentiation and apoptosis through their ability to alter gene expression by epigenetic mechanisms. Since their discovery in 1996, ING proteins have been classified as type II tumour suppressors on the basis of reports describing their down-regulation and mislocalization in a variety of cancer types. In addition to their regulation by transcriptional mechanisms, understanding the range of PTMs (post-translational modifications) of INGs is important in understanding how ING functions are fine-tuned in the physiological setting and how they add to the repertoire of activities affected by the INGs. In the present paper we review the different PTMs that have been reported to occur on INGs. We discuss the PTMs that modulate ING function under normal conditions and in response to a variety of stresses. We also describe the ING PTMs that have been identified by several unbiased MS-based PTM enrichment techniques and subsequent proteomic analysis. Among the ING PTMs identified to date, a subset has been characterized for their biological significance and have been shown to affect processes including subcellular localization, interaction with enzymatic complexes and ING protein half-life. The present review aims to highlight the emerging role of PTMs in regulating ING function and to suggest additional pathways and functions where PTMs may effect ING function.


mSystems ◽  
2021 ◽  
Author(s):  
Rohit Verma ◽  
Sandhini Saha ◽  
Shiv Kumar ◽  
Shailendra Mani ◽  
Tushar Kanti Maiti ◽  
...  

Replication of a positive-strand RNA virus involves an RNA-protein complex consisting of viral genomic RNA, host RNA(s), virus-encoded proteins, and host proteins. Dissecting out individual components of the replication complex will help decode the mechanism of viral replication. 5′ and 3′ UTRs in positive-strand RNA viruses play essential regulatory roles in virus replication.


2019 ◽  
Vol 68 (3) ◽  
pp. 786-791 ◽  
Author(s):  
Ban Wang ◽  
Yanhui Li ◽  
Heather Wang ◽  
Jing Zhao ◽  
Yutong Zhao ◽  
...  

FOXO3a belongs to a family of transcription factors characterized by a conserved forkhead box DNA-binding domain. It has been known to regulate various cellular processes including cell proliferation, apoptosis and differentiation. Post-translational modifications of FOXO3a and their roles in the regulation of FOXO3a activity have been well-documented. FOXO3a can be phosphorylated, acetylated and ubiquitinated, however, the ISGylation of FOXO3a has not been reported. Protein overexpression, ISGylation and half-life were measured to determine the post-translational modification of FOXO3a. Human fibroblast cells were treated with transforming growth factor (TGF)-β1 to determine the role of FOXO3a ISGylation in TGF-β1 signaling. FOXO3a’s half-life is around 3.7 hours. Inhibition of the proteasome, not lysosome, extends its half-life. ISGylation, but not ubiquitination of FOXO3a, is increased in the presence of the proteasome inhibitor. Overexpression of ISG15 increases FOXO3a degradation, while overexpression of USP18 stabilizes FOXO3a through de-ISGylation. These results suggest that FOXO3a is degraded in the ISGylation and proteasome system, which can be reversed by USP18, an ISG15-specific deubiquitinase. This study reveals a new molecular mechanism by which ISGylation regulates FOXO3a degradation. Furthermore, we show that the overexpression of FOXO3a attenuated TGF-β1-induced fibronectin expression in human lung fibroblast cells without altering Smad2/3 expression and activation. FOXO3a can be ISGylated, which can regulate FOXO3a stability. USP18/FOXO3a pathway is a potential target for treating TGF-β1-mediated fibrotic diseases such as idiopathic pulmonary fibrosis.


2019 ◽  
Vol 20 (12) ◽  
pp. 3077 ◽  
Author(s):  
Elizabeta Madzharova ◽  
Philipp Kastl ◽  
Fabio Sabino ◽  
Ulrich auf dem Keller

Due to their capacity to process different proteins of the extracellular matrix (ECM), matrix metalloproteinases (MMPs) were initially described as a family of secreted proteases, functioning as main ECM regulators. However, through proteolytic processing of various biomolecules, MMPs also modulate intra- and extracellular pathways and networks. Thereby, they are functionally implicated in the regulation of multiple physiological and pathological processes. Consequently, MMP activity is tightly regulated through a combination of epigenetic, transcriptional, and post-transcriptional control of gene expression, proteolytic activation, post-translational modifications (PTMs), and extracellular inhibition. In addition, MMPs, their substrates and ECM binding partners are frequently modified by PTMs, which suggests an important role of PTMs in modulating the pleiotropic activities of these proteases. This review summarizes the recent progress towards understanding the role of PTMs (glycosylation, phosphorylation, glycosaminoglycans) on the activity of several members of the MMP family.


2019 ◽  
Vol 75 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Caroline Langley ◽  
Octavia Goodwin ◽  
John V. Dzimianski ◽  
Courtney M. Daczkowski ◽  
Scott D. Pegan

Bats have long been observed to be the hosts and the origin of numerous human diseases. Bats, like all mammals, rely on a number of innate immune mechanisms to combat invading pathogens, including the interferon type I, II and III responses. Ubiquitin-like interferon-stimulated gene product 15 (ISG15) is a key modulator of these interferon responses. Within these pathways, ISG15 can serve to stabilize host proteins modulating innate immune responses and act as a cytokine. Post-translational modifications of viral proteins introduced by ISG15 have also been observed to directly affect the function of numerous viral proteins. Unlike ubiquitin, which is virtually identical across all animals, comparison of ISG15s across species reveals that they are relatively divergent, with sequence identity dropping to as low as ∼58% among mammals. In addition to serving as an obstacle to the zoonotic transmission of influenza, these ISG15 species–species differences have also long been shown to have an impact on the function of viral deISGylases. Recently, the structure of the first nonhuman ISG15, originating from mouse, suggested that the structures of human ISG15 may not be reflective of other species. Here, the structure of ISG15 from the bat species Myotis davidii solved to 1.37 Å resolution is reported. Comparison of this ISG15 structure with those from human and mouse not only underscores the structural impact of ISG15 species–species differences, but also highlights a conserved hydrophobic motif formed between the two domains of ISG15. Using the papain-like deISGylase from Severe acute respiratory syndrome coronavirus as a probe, the biochemical importance of this motif in ISG15–protein engagements was illuminated.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yasir Mohamud ◽  
Junyan Shi ◽  
Hui Tang ◽  
Pinhao Xiang ◽  
Yuan Chao Xue ◽  
...  

Abstract Coxsackievirus B3 (CVB3) is a single-stranded positive RNA virus that usurps cellular machinery, including the evolutionarily anti-viral autophagy pathway, for productive infections. Despite the emergence of double-membraned autophagosome-like vesicles during CVB3 infection, very little is known about the mechanism of autophagy initiation. In this study, we investigated the role of established autophagy factors in the initiation of CVB3-induced autophagy. Using siRNA-mediated gene-silencing and CRISPR-Cas9-based gene-editing in culture cells, we discovered that CVB3 bypasses the ULK1/2 and PI3K complexes to trigger autophagy. Moreover, we found that CVB3-induced LC3 lipidation occurred independent of WIPI2 and the transmembrane protein ATG9 but required components of the late-stage ubiquitin-like ATG conjugation system including ATG5 and ATG16L1. Remarkably, we showed the canonical autophagy factor ULK1 was cleaved through the catalytic activity of the viral proteinase 3C. Mutagenesis experiments identified the cleavage site of ULK1 after Q524, which separates its N-terminal kinase domain from C-terminal substrate binding domain. Finally, we uncovered PI4KIIIβ (a PI4P kinase), but not PI3P or PI5P kinases as requisites for CVB3-induced LC3 lipidation. Taken together, our studies reveal that CVB3 initiates a non-canonical form of autophagy that bypasses ULK1/2 and PI3K signaling pathways to ultimately converge on PI4KIIIβ- and ATG5–ATG12–ATG16L1 machinery.


2021 ◽  
Author(s):  
Ernesto Estrada

Abstract Background : Extensive extrapulmonary damages in a dozen of organs/systems, including the central nervous system (CNS), are reported in patients of the coronavirus disease 2019 (COVID-19). Three cases of Parkinson's disease (PD) have been reported as a direct consequence of COVID-19. In spite of the scarce data for establishing a definitive link between COVID-19 and PD some hypothesis have been proposed to explain the cases reported. They, however, do not fit well with the clinical findings reported for COVID-19 patients in general and for the PD cases reported in particular. Given the importance of this potential connection we present here a molecular-level mechanism that explain well these findings and will serve to explore the potential CNS damage in COVID-19 patients. Methods : A model explaining the cascade effects from COVID-19 to CNS is developed by using bioinformatic tools. It includes the post-translational modification of host proteins in the lungs by viral proteins, the transport of modified host proteins via exosomes out the lungs, and the disruption of protein-protein interaction in the CNS by these modified host proteins. Results : We found 44 proteins significantly expressed in the CNS which are associated with PD and whose interactions can be perturbed by 24 host proteins significantly expressed in the lungs. These 24 perturbators are found to interact with viral proteins and to form part of the cargoes of exosomes in human tissues. The joint set of perturbators and PD-vulnerable proteins form a tightly connected network with significantly more connections than expected by selecting a random cluster of proteins of similar size from the human proteome. Conclusions : The molecular-level mechanism presented here provides several routes for the cascading of effects from the lungs of COVID-19 patients to PD. In particular, the disruption of autophagy/ubiquitination processes appears as an important mechanism that triggers the generation of large amounts of exosomes containing perturbators in their cargo, which would insult several PD-vulnerable proteins, potentially triggering Parkinsonism in COVID-19 patients.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Tianshui Sun ◽  
Zhuonan Liu ◽  
Qing Yang

Abstract Metabolic reprogramming, including enhanced biosynthesis of macromolecules, altered energy metabolism, and maintenance of redox homeostasis, is considered a hallmark of cancer, sustaining cancer cell growth. Multiple signaling pathways, transcription factors and metabolic enzymes participate in the modulation of cancer metabolism and thus, metabolic reprogramming is a highly complex process. Recent studies have observed that ubiquitination and deubiquitination are involved in the regulation of metabolic reprogramming in cancer cells. As one of the most important type of post-translational modifications, ubiquitination is a multistep enzymatic process, involved in diverse cellular biological activities. Dysregulation of ubiquitination and deubiquitination contributes to various disease, including cancer. Here, we discuss the role of ubiquitination and deubiquitination in the regulation of cancer metabolism, which is aimed at highlighting the importance of this post-translational modification in metabolic reprogramming and supporting the development of new therapeutic approaches for cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document