scholarly journals Self-Assembling Flexible 3D-MEAs for Cortical Implants

2021 ◽  
Vol 7 (2) ◽  
pp. 359-362
Author(s):  
Lena Hegel ◽  
Andrea Kauth ◽  
Karsten Seidl ◽  
Sven Ingebrandt

Abstract Flexible Multi Electrode Arrays (MEAs) for neural interfacing reduce the mechanical mismatch between the soft brain tissue and the electrode arrays allowing accurate signal recordings and neural stimulation while reducing inflammatory responses. Many standard manufacturing processes of MEAs are designed for planar structures and the production of three-dimensional structures is challenging. In the present study, shaft structures with one to two circular gold microelectrodes (10 - 20 μm), each on a base polyimide (PI) substrate, were investigated. We describe a fabrication method, with which shafts made from bi-layer PI flip into the third dimension, which is a first step towards spontaneous assembly of electrodes in flexible 3D MEAs for neuroelectronic applications. A lift-up of the shafts was achieved by the contraction of a second PI layer and a steady nitrogen flow during polycondensation. This shrinking PI was structured in pits with a width of 5 - 600 μm. We achieved liftup angles of up to 42 degrees. The shaft structures can be hardened and later be used for neural implantation experiments.

Author(s):  
B. Ralph ◽  
A.R. Jones

In all fields of microscopy there is an increasing interest in the quantification of microstructure. This interest may stem from a desire to establish quality control parameters or may have a more fundamental requirement involving the derivation of parameters which partially or completely define the three dimensional nature of the microstructure. This latter categorey of study may arise from an interest in the evolution of microstructure or from a desire to generate detailed property/microstructure relationships. In the more fundamental studies some convolution of two-dimensional data into the third dimension (stereological analysis) will be necessary.In some cases the two-dimensional data may be acquired relatively easily without recourse to automatic data collection and further, it may prove possible to perform the data reduction and analysis relatively easily. In such cases the only recourse to machines may well be in establishing the statistical confidence of the resultant data. Such relatively straightforward studies tend to result from acquiring data on the whole assemblage of features making up the microstructure. In this field data mode, when parameters such as phase volume fraction, mean size etc. are sought, the main case for resorting to automation is in order to perform repetitive analyses since each analysis is relatively easily performed.


1997 ◽  
Vol 3 (S2) ◽  
pp. 431-432
Author(s):  
S. A. Harfenist ◽  
Z. L. Wang ◽  
R. L. Whetten ◽  
I. Vezmar ◽  
M. M. Alvarez ◽  
...  

Silver nanocrystals passivated by dodecanethiol self-assembled monolayers were produced using an aerosol technique described in detail elsewhere [1]. Self-assembling passivated nanocrystal-superlattices (NCS's) involve self-organization into monolayers, thin films, and superlattices of size-selected nanoclusters encapsulated in a protective compact coating [2,3,4,5,6,7]. We report the preparation and structure characterization of three-dimensional (3-D) hexagonal close-packed Ag nanocrystal supercrystals from Ag nanocrystals of ˜4.5 nm in diameters. The crystallography of the superlattice and atomic core lattices were determined using transmission electron microscopy (TEM) and high-resolution TEM.SEM was used to image the nanocrystal superlattices formed on an amorphous carbon film of an TEM specimen grid (fig. la). The superlattice films show well shaped, sharply faceted, triangular shaped sheets. Figure lb depicts numerous Ag nanocrystal aggregates uniformly distributed over the imaging region. Inset in this figure is an enlargement of the boxed region at the edge of a supercrystal typifying the ordered nanocrystal packing.


1997 ◽  
Vol 482 ◽  
Author(s):  
H. Hirayama ◽  
S. Tanaka ◽  
P. Ramvall ◽  
Y. Aoyagi

AbstractWe demonstrate photoluminescence from self- assembling InGaN quantum dots (QDs), which are artificially fabricated on AlGaN surfaces via metal- organic chemical vapor deposition. InGaN QDs are successfully fabricated by the growth mode transition from step- flow to three dimensional island formation by using anti-surfactant silicon on AlGaN surface. The diameter and height of the fabricated InGaN QDs are estimated to be ˜10nm and ˜5nm, respectively, by an atomic- force- microscope (AFM). Indium mole fraction of InxGal−x N QDs is controlled from x=˜0.22 to ˜0.52 by varying the growth temperature of QDs. Intense photoluminescence is observed even at room temperature from InGaN QDs embedded with the GaN capping layers. In addition, the temperature- dependent energy shift of the photoluminescence peak- energy shows a localization behavior.


1967 ◽  
Vol 22 (4) ◽  
pp. 422-431 ◽  
Author(s):  
Kyozaburo Kambe

A general theory of electron diffraction by crystals is developed. The crystals are assumed to be infinitely extended in two dimensions and finite in the third dimension. For the scattering problem by this structure two-dimensionally expanded forms of GREEN’S function and integral equation are at first derived, and combined in single three-dimensional forms. EWALD’S method is applied to sum up the series for GREEN’S function.


1994 ◽  
Vol 14 (2) ◽  
pp. 1520-1529
Author(s):  
C Liang ◽  
S A Gerbi

The replication origin region for DNA amplification in Sciara coprophila DNA puff II/9A was analyzed with a novel three-dimensional (3D) gel method. Our 3D gel method involves running a neutral/neutral 2D gel and then cutting out vertical gel slices from the area containing replication intermediates, rotating these slices 90 degrees to form the third dimension, and running an alkaline gel for each of the slices. Therefore, replication intermediates are separated into forks and bubbles and then are resolved into parental and nascent strands. We used this technique to determine the size of forks and bubbles and to confirm the location of the major initiation region previously mapped by 2D gels to a 1-kb region. Furthermore, our 3D gel analyses suggest that only one initiation event in the origin region occurs on a single DNA molecule and that the fork arc in the composite fork-plus-bubble pattern in neutral/neutral 2D gels does not result from broken bubbles.


A lattice model of liquid crystalline microstructure has been developed. It provides the basis for the three-dimensional solution of the Frank elasticity equations for given boundary conditions while, in addition, providing a mechanistic representation of the development of texture as the microstructure relaxes with time. It is also able to represent disclination motion and the processes associated with their interaction. In particular, it has been used to study (s = ± 1/2) disclination loops, both those described by a single rotation vector, 17, and those in which 17 has a constant angular relationship with the loop line and are equivalent to a point singularity at a distance much larger than the loop radius. The application of the model to disclinations of unit strength, which are unstable both energetically and topologically, has shown that the decomposition into two 1/2 strength lines of lower total energy occurs much more readily than topological escape in the third dimension. The implication for structures observed in capillary tubes is discussed. The influence on microstructure of a splay constant much higher than that of twist or bend is explored in the context of main-chain liquid crystalline polymers, in particular, the stabilization of tangential +1 lines under such conditions is predicted in accord with observed microstructural features.


2020 ◽  
Vol 8 (10) ◽  
pp. 756
Author(s):  
Ameen Topa ◽  
Burak Can Cerik ◽  
Do Kyun Kim

The development of numerical simulations is potentially useful in predicting the most suitable manufacturing processes and ultimately improving product quality. Seamless pipes are manufactured by a rotary piercing process in which round billets (workpiece) are fed between two rolls and pierced by a stationary plug. During this process, the material undergoes severe deformation which renders it impractical to be modelled and analysed with conventional finite element methods. In this paper, three-dimensional numerical simulations of the piercing process are performed with an arbitrary Lagrangian–Eulerian (ALE) formulation in LS-DYNA software. Details about the material model as well as the elements’ formulations are elaborated here, and mesh sensitivity analysis was performed. The results of the numerical simulations are in good agreement with experimental data found in the literature and the validity of the analysis method is confirmed. The effects of varying workpiece velocity, process temperature, and wall thickness on the maximum stress levels of the product material/pipes are investigated by performing simulations of sixty scenarios. Three-dimensional surface plots are generated which can be utilized to predict the maximum stress value at any given combination of the three parameters.


Sign in / Sign up

Export Citation Format

Share Document