scholarly journals Electrodermal Activity Based Emotion Recognition using Time-Frequency Methods and Machine Learning Algorithms

2021 ◽  
Vol 7 (2) ◽  
pp. 863-866
Author(s):  
Yedukondala Rao Veeranki ◽  
Nagarajan Ganapathy ◽  
Ramakrishnan Swaminathan

Abstract In this work, the feasibility of time-frequency methods, namely short-time Fourier transform, Choi Williams distribution, and smoothed pseudo-Wigner-Ville distribution in the classification of happy and sad emotional states using Electrodermal activity signals have been explored. For this, the annotated happy and sad signals are obtained from an online public database and decomposed into phasic components. The time-frequency analysis has been performed on the phasic components using three different methods. Four statistical features, namely mean, variance, kurtosis, and skewness are extracted from each method. Four classifiers, namely logistic regression, Naive Bayes, random forest, and support vector machine, have been used for the classification. The combination of the smoothed pseudo-Wigner-Ville distribution and random forest yields the highest F-measure of 68.74% for classifying happy and sad emotional states. Thus, it appears that the suggested technique could be helpful in the diagnosis of clinical conditions linked to happy and sad emotional states.

Author(s):  
Shweta Dabetwar ◽  
Stephen Ekwaro-Osire ◽  
João Paulo Dias

Abstract Composite materials have tremendous and ever-increasing applications in complex engineering systems; thus, it is important to develop non-destructive and efficient condition monitoring methods to improve damage prediction, thereby avoiding catastrophic failures and reducing standby time. Nondestructive condition monitoring techniques when combined with machine learning applications can contribute towards the stated improvements. Thus, the research question taken into consideration for this paper is “Can machine learning techniques provide efficient damage classification of composite materials to improve condition monitoring using features extracted from acousto-ultrasonic measurements?” In order to answer this question, acoustic-ultrasonic signals in Carbon Fiber Reinforced Polymer (CFRP) composites for distinct damage levels were taken from NASA Ames prognostics data repository. Statistical condition indicators of the signals were used as features to train and test four traditional machine learning algorithms such as K-nearest neighbors, support vector machine, Decision Tree and Random Forest, and their performance was compared and discussed. Results showed higher accuracy for Random Forest with a strong dependency on the feature extraction/selection techniques employed. By combining data analysis from acoustic-ultrasonic measurements in composite materials with machine learning tools, this work contributes to the development of intelligent damage classification algorithms that can be applied to advanced online diagnostics and health management strategies of composite materials, operating under more complex working conditions.


2019 ◽  
Vol 3 (1) ◽  
pp. 58
Author(s):  
Yefta Christian

<p class="8AbstrakBahasaIndonesia"><span>The growth of online stores nowadays is very rapid. This is supported by faster and better internet infrastructure. The increasing growth of online stores makes the competition more difficult in this business field. It is necessary for online stores to have a website or an application that is able to measure and classify consumers’ spending intentions, so that the consumers will have eyes on things on the sites and applications to make purchases eventually. Classification of online shoppers’ intentions can be done by using several algorithms, such as Naïve Bayes, Multi-Layer Perceptron, Support Vector Machine, Random Forest and J48 Decision Trees. In this case, the comparison of algorithms is done with two tools, WEKA and Sci-Kit Learn by comparing the values of F1-Score, accuracy, Kappa Statistic and mean absolute error. There is a difference between the test results using WEKA and Sci-Kit Learn on the Support Vector Machine algorithm. Based on this research, the Random Forest algorithm is the most appropriate algorithm to be used as an algorithm for classifying online shoppers’ intentions.</span></p>


Author(s):  
Yedukondala Rao Veeranki ◽  
Nagarajan Ganapathy ◽  
Ramakrishnan Swaminathan

Analysis of fluctuations in electrodermal activity (EDA) signals is widely preferred for emotion recognition. In this work, an attempt has been made to determine the patterns of fluctuations in EDA signals for various emotional states using improved symbolic aggregate approximation. For this, the EDA is obtained from a publicly available online database. The EDA is decomposed into phasic components and divided into equal segments. Each segment is transformed into a piecewise aggregate approximation (PAA). These approximations are discretized using 11 time-domain features to obtain symbolic sequences. Shannon entropy is extracted from each PAA-based symbolic sequence using varied symbol size [Formula: see text] and window length [Formula: see text]. Three machine-learning algorithms, namely Naive Bayes, support vector machine and rotation forest, are used for the classification. The results show that the proposed approach is able to determine the patterns of fluctuations for various emotional states in EDA signals. PAA features, namely maximum amplitude and chaos, significantly identify the subtle fluctuations in EDA and transforms them in symbolic sequences. The optimal values of [Formula: see text] and [Formula: see text] yield the highest performance. The rotation forest is accurate (F-[Formula: see text] and 60.02% for arousal and valence dimensions) in classifying various emotional states. The proposed approach can capture the patterns of fluctuations for varied-length signals. Particularly, the support vector machine yields the highest performance for a lower length of signals. Thus, it appears that the proposed method might be utilized to analyze various emotional states in both normal and clinical settings.


2019 ◽  
Vol 20 (S19) ◽  
Author(s):  
Sean Chun-Chang Chen ◽  
Chung-Ming Lo ◽  
Shih-Hua Wang ◽  
Emily Chia-Yu Su

Abstract Background Accurate classification of diffuse gliomas, the most common tumors of the central nervous system in adults, is important for appropriate treatment. However, detection of isocitrate dehydrogenase (IDH) mutation and chromosome1p/19q codeletion, biomarkers to classify gliomas, is time- and cost-intensive and diagnostic discordance remains an issue. Adenosine to inosine (A-to-I) RNA editing has emerged as a novel cancer prognostic marker, but its value for glioma classification remains largely unexplored. We aim to (1) unravel the relationship between RNA editing and IDH mutation and 1p/19q codeletion and (2) predict IDH mutation and 1p/19q codeletion status using machine learning algorithms. Results By characterizing genome-wide A-to-I RNA editing signatures of 638 gliomas, we found that tumors without IDH mutation exhibited higher total editing level compared with those carrying it (Kolmogorov-Smirnov test, p < 0.0001). When tumor grade was considered, however, only grade IV tumors without IDH mutation exhibited higher total editing level. According to 10-fold cross-validation, support vector machines (SVM) outperformed random forest and AdaBoost (DeLong test, p < 0.05). The area under the receiver operating characteristic curve (AUC) of SVM in predicting IDH mutation and 1p/19q codeletion were 0.989 and 0.990, respectively. After performing feature selection, AUCs of SVM and AdaBoost in predicting IDH mutation were higher than that of random forest (0.985 and 0.983 vs. 0.977; DeLong test, p < 0.05), but AUCs of the three algorithms in predicting 1p/19q codeletion were similar (0.976–0.982). Furthermore, 67% of the six continuously misclassified samples by our 1p/19q codeletion prediction models were misclassifications in the original labelling after inspection of 1p/19q status and/or pathology report, highlighting the accuracy and clinical utility of our models. Conclusions The study represents the first genome-wide analysis of glioma editome and identifies RNA editing as a novel prognostic biomarker for glioma. Our prediction models provide standardized, accurate, reproducible and objective classification of gliomas. Our models are not only useful in clinical decision-making, but also able to identify editing events that have the potential to serve as biomarkers and therapeutic targets in glioma management and treatment.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 60
Author(s):  
Bona Hiu Yan Chow ◽  
Constantino Carlos Reyes-Aldasoro

This paper presents a computer-vision-based methodology for automatic image-based classification of 2042 training images and 284 unseen (test) images divided into 68 categories of gemstones. A series of feature extraction techniques (33 including colour histograms in the RGB, HSV and CIELAB space, local binary pattern, Haralick texture and grey-level co-occurrence matrix properties) were used in combination with different machine-learning algorithms (Logistic Regression, Linear Discriminant Analysis, K-Nearest Neighbour, Decision Tree, Random Forest, Naive Bayes and Support Vector Machine). Deep-learning classification with ResNet-18 and ResNet-50 was also investigated. The optimal combination was provided by a Random Forest algorithm with the RGB eight-bin colour histogram and local binary pattern features, with an accuracy of 69.4% on unseen images; the algorithms required 0.0165 s to process the 284 test images. These results were compared against three expert gemmologists with at least 5 years of experience in gemstone identification, who obtained accuracies between 42.6% and 66.9% and took 42–175 min to classify the test images. As expected, the human experts took much longer than the computer vision algorithms, which in addition provided, albeit marginal, higher accuracy. Although these experiments included a relatively low number of images, the superiority of computer vision over humans is in line with what has been reported in other areas of study, and it is encouraging to further explore the application in gemmology and related areas.


Sentiment analysis is deals with the classification of sentiments expressed in a particular document. The analysis of user generated data by using sentiment analysis is very useful for knowing the opinion of a crowd. This paper is mainly aimed to tackle the problem of polarity categorization of sentiment analysis. A Detailed description of the sentiment analysis process is also given. Product review data set from UCI repository is used for analysis. This paper is giving a comparative analysis of four supervised machine learning algorithms namely Naive Bayes, Support Vector Machine, Decision Tree and Random Forest which are used for product review analysis. The result shows that, Random Forest classification algorithm provides better accuracy than other three algorithms


2021 ◽  
Vol 13 (9) ◽  
pp. 4728
Author(s):  
Zinhle Mashaba-Munghemezulu ◽  
George Johannes Chirima ◽  
Cilence Munghemezulu

Rural communities rely on smallholder maize farms for subsistence agriculture, the main driver of local economic activity and food security. However, their planted area estimates are unknown in most developing countries. This study explores the use of Sentinel-1 and Sentinel-2 data to map smallholder maize farms. The random forest (RF), support vector (SVM) machine learning algorithms and model stacking (ST) were applied. Results show that the classification of combined Sentinel-1 and Sentinel-2 data improved the RF, SVM and ST algorithms by 24.2%, 8.7%, and 9.1%, respectively, compared to the classification of Sentinel-1 data individually. Similarities in the estimated areas (7001.35 ± 1.2 ha for RF, 7926.03 ± 0.7 ha for SVM and 7099.59 ± 0.8 ha for ST) show that machine learning can estimate smallholder maize areas with high accuracies. The study concludes that the single-date Sentinel-1 data were insufficient to map smallholder maize farms. However, single-date Sentinel-1 combined with Sentinel-2 data were sufficient in mapping smallholder farms. These results can be used to support the generation and validation of national crop statistics, thus contributing to food security.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4324
Author(s):  
Moaed A. Abd ◽  
Rudy Paul ◽  
Aparna Aravelli ◽  
Ou Bai ◽  
Leonel Lagos ◽  
...  

Multifunctional flexible tactile sensors could be useful to improve the control of prosthetic hands. To that end, highly stretchable liquid metal tactile sensors (LMS) were designed, manufactured via photolithography, and incorporated into the fingertips of a prosthetic hand. Three novel contributions were made with the LMS. First, individual fingertips were used to distinguish between different speeds of sliding contact with different surfaces. Second, differences in surface textures were reliably detected during sliding contact. Third, the capacity for hierarchical tactile sensor integration was demonstrated by using four LMS signals simultaneously to distinguish between ten complex multi-textured surfaces. Four different machine learning algorithms were compared for their successful classification capabilities: K-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and neural network (NN). The time-frequency features of the LMSs were extracted to train and test the machine learning algorithms. The NN generally performed the best at the speed and texture detection with a single finger and had a 99.2 ± 0.8% accuracy to distinguish between ten different multi-textured surfaces using four LMSs from four fingers simultaneously. The capability for hierarchical multi-finger tactile sensation integration could be useful to provide a higher level of intelligence for artificial hands.


2016 ◽  
Vol 51 (20) ◽  
pp. 2853-2862 ◽  
Author(s):  
Serkan Ballı

The aim of this study is to diagnose and classify the failure modes for two serial fastened sandwich composite plates using data mining techniques. The composite material used in the study was manufactured using glass fiber reinforced layer and aluminum sheets. Obtained results of previous experimental study for sandwich composite plates, which were mechanically fastened with two serial pins or bolts were used for classification of failure modes. Furthermore, experimental data from previous study consists of different geometrical parameters for various applied preload moments as 0 (pinned), 2, 3, 4, and 5 Nm (bolted). In this study, data mining methods were applied by using these geometrical parameters and pinned/bolted joint configurations. Therefore, three geometrical parameters and 100 test data were used for classification by utilizing support vector machine, Naive Bayes, K-Nearest Neighbors, Logistic Regression, and Random Forest methods. According to experiments, Random Forest method achieved better results than others and it was appropriate for diagnosing and classification of the failure modes. Performances of all data mining methods used were discussed in terms of accuracy and error ratios.


2018 ◽  
Vol 28 (02) ◽  
pp. 1750036 ◽  
Author(s):  
Shuqiang Wang ◽  
Yong Hu ◽  
Yanyan Shen ◽  
Hanxiong Li

In this study, we propose an automated framework that combines diffusion tensor imaging (DTI) metrics with machine learning algorithms to accurately classify control groups and groups with cervical spondylotic myelopathy (CSM) in the spinal cord. The comparison between selected voxel-based classification and mean value-based classification were performed. A support vector machine (SVM) classifier using a selected voxel-based dataset produced an accuracy of 95.73%, sensitivity of 93.41% and specificity of 98.64%. The efficacy of each index of diffusion for classification was also evaluated. Using the proposed approach, myelopathic areas in CSM are detected to provide an accurate reference to assist spine surgeons in surgical planning in complicated cases.


Sign in / Sign up

Export Citation Format

Share Document