scholarly journals Comparison of Machine Learning Algorithms Using WEKA and Sci-Kit Learn in Classifying Online Shopper Intention

2019 ◽  
Vol 3 (1) ◽  
pp. 58
Author(s):  
Yefta Christian

<p class="8AbstrakBahasaIndonesia"><span>The growth of online stores nowadays is very rapid. This is supported by faster and better internet infrastructure. The increasing growth of online stores makes the competition more difficult in this business field. It is necessary for online stores to have a website or an application that is able to measure and classify consumers’ spending intentions, so that the consumers will have eyes on things on the sites and applications to make purchases eventually. Classification of online shoppers’ intentions can be done by using several algorithms, such as Naïve Bayes, Multi-Layer Perceptron, Support Vector Machine, Random Forest and J48 Decision Trees. In this case, the comparison of algorithms is done with two tools, WEKA and Sci-Kit Learn by comparing the values of F1-Score, accuracy, Kappa Statistic and mean absolute error. There is a difference between the test results using WEKA and Sci-Kit Learn on the Support Vector Machine algorithm. Based on this research, the Random Forest algorithm is the most appropriate algorithm to be used as an algorithm for classifying online shoppers’ intentions.</span></p>

Author(s):  
Minhaz Rahman Talukder

The study explores analyzes the temporal changes in precipitation using the data from 1881 to 2020 across Germany at the regional level. Man-Kendall and Hamad-Rao modification tests were employed to analyze the precipitation trend,while Pettit test was used for detecting the change point in the time frame. Machine learning methods like k-nearest neighbour, Support vector machine and Random forest algorithms were applied for prediction. Most of the regions showed an increasing trend annually and seasonally in 0.05 significance level while some negative can be seen in summer. Furthermore, Based on Pettit test, most of the change points were detected after 1940 in several regions. In the prediction of precipitation, k-NN algorithm showed better performance in terms of mean absolute error rather than Support vector machine and Random forest algorithms.


Author(s):  
Angana Saikia ◽  
Vinayak Majhi ◽  
Masaraf Hussain ◽  
Sudip Paul ◽  
Amitava Datta

Tremor is an involuntary quivering movement or shake. Characteristically occurring at rest, the classic slow, rhythmic tremor of Parkinson's disease (PD) typically starts in one hand, foot, or leg and can eventually affect both sides of the body. The resting tremor of PD can also occur in the jaw, chin, mouth, or tongue. Loss of dopamine leads to the symptoms of Parkinson's disease and may include a tremor. For some people, a tremor might be the first symptom of PD. Various studies have proposed measurable technologies and the analysis of the characteristics of Parkinsonian tremors using different techniques. Various machine-learning algorithms such as a support vector machine (SVM) with three kernels, a discriminant analysis, a random forest, and a kNN algorithm are also used to classify and identify various kinds of tremors. This chapter focuses on an in-depth review on identification and classification of various Parkinsonian tremors using machine learning algorithms.


Author(s):  
Shweta Dabetwar ◽  
Stephen Ekwaro-Osire ◽  
João Paulo Dias

Abstract Composite materials have tremendous and ever-increasing applications in complex engineering systems; thus, it is important to develop non-destructive and efficient condition monitoring methods to improve damage prediction, thereby avoiding catastrophic failures and reducing standby time. Nondestructive condition monitoring techniques when combined with machine learning applications can contribute towards the stated improvements. Thus, the research question taken into consideration for this paper is “Can machine learning techniques provide efficient damage classification of composite materials to improve condition monitoring using features extracted from acousto-ultrasonic measurements?” In order to answer this question, acoustic-ultrasonic signals in Carbon Fiber Reinforced Polymer (CFRP) composites for distinct damage levels were taken from NASA Ames prognostics data repository. Statistical condition indicators of the signals were used as features to train and test four traditional machine learning algorithms such as K-nearest neighbors, support vector machine, Decision Tree and Random Forest, and their performance was compared and discussed. Results showed higher accuracy for Random Forest with a strong dependency on the feature extraction/selection techniques employed. By combining data analysis from acoustic-ultrasonic measurements in composite materials with machine learning tools, this work contributes to the development of intelligent damage classification algorithms that can be applied to advanced online diagnostics and health management strategies of composite materials, operating under more complex working conditions.


2007 ◽  
Vol 3 ◽  
pp. 117693510700300 ◽  
Author(s):  
Changyu Shen ◽  
Timothy E Breen ◽  
Lacey E Dobrolecki ◽  
C. Max Schmidt ◽  
George W. Sledge ◽  
...  

Introduction As an alternative to DNA microarrays, mass spectrometry based analysis of proteomic patterns has shown great potential in cancer diagnosis. The ultimate application of this technique in clinical settings relies on the advancement of the technology itself and the maturity of the computational tools used to analyze the data. A number of computational algorithms constructed on different principles are available for the classification of disease status based on proteomic patterns. Nevertheless, few studies have addressed the difference in the performance of these approaches. In this report, we describe a comparative case study on the classification accuracy of hepatocellular carcinoma based on the serum proteomic pattern generated from a Surface Enhanced Laser Desorption/Ionization (SELDI) mass spectrometer. Methods Nine supervised classification algorithms are implemented in R software and compared for the classification accuracy. Results We found that the support vector machine with radial function is preferable as a tool for classification of hepatocellular carcinoma using features in SELDI mass spectra. Among the rest of the methods, random forest and prediction analysis of microarrays have better performance. A permutation-based technique reveals that the support vector machine with a radial function seems intrinsically superior in learning from the training data since it has a lower prediction error than others when there is essentially no differential signal. On the other hand, the performance of the random forest and prediction analysis of microarrays rely on their capability of capturing the signals with substantial differentiation between groups. Conclusions Our finding is similar to a previous study, where classification methods based on the Matrix Assisted Laser Desorption/Ionization (MALDI) mass spectrometry are compared for the prediction accuracy of ovarian cancer. The support vector machine, random forest and prediction analysis of microarrays provide better prediction accuracy for hepatocellular carcinoma using SELDI proteomic data than six other approaches.


Witheverypassingsecondsocialnetworkcommunityisgrowingrapidly,becauseofthat,attackershaveshownkeeninterestinthesekindsofplatformsandwanttodistributemischievouscontentsontheseplatforms.Withthefocus on introducing new set of characteristics and features forcounteractivemeasures,agreatdealofstudieshasresearchedthe possibility of lessening the malicious activities on social medianetworks. This research was to highlight features for identifyingspammers on Instagram and additional features were presentedto improve the performance of different machine learning algorithms. Performance of different machine learning algorithmsnamely, Multilayer Perceptron (MLP), Random Forest (RF), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM)were evaluated on machine learning tools named, RapidMinerand WEKA. The results from this research tells us that RandomForest (RF) outperformed all other selected machine learningalgorithmsonbothselectedmachinelearningtools.OverallRandom Forest (RF) provided best results on RapidMiner. Theseresultsareusefulfortheresearcherswhoarekeentobuildmachine learning models to find out the spamming activities onsocialnetworkcommunities.


Author(s):  
Prathima P

Abstract: Fall is a significant national health issue for the elderly people, generally resulting in severe injuries when the person lies down on the floor over an extended period without any aid after experiencing a great fall. Thus, elders need to be cared very attentively. A supervised-machine learning based fall detection approach with accelerometer, gyroscope is devised. The system can detect falls by grouping different actions as fall or non-fall events and the care taker is alerted immediately as soon as the person falls. The public dataset SisFall with efficient class of features is used to identify fall. The Random Forest (RF) and Support Vector Machine (SVM) machine learning algorithms are employed to detect falls with lesser false alarms. The SVM algorithm obtain a highest accuracy of 99.23% than RF algorithm. Keywords: Fall detection, Machine learning, Supervised classification, Sisfall, Activities of daily living, Wearable sensors, Random Forest, Support Vector Machine


2021 ◽  
Author(s):  
Leonie Lampe ◽  
Sebastian Niehaus ◽  
Hans-Jürgen Huppertz ◽  
Alberto Merola ◽  
Janis Reinelt ◽  
...  

Abstract Importance The entry of artificial intelligence into medicine is pending. Several methods have been used for predictions of structured neuroimaging data, yet nobody compared them in this context.Objective Multi-class prediction is key for building computational aid systems for differential diagnosis. We compared support vector machine, random forest, gradient boosting, and deep feed-forward neural networks for the classification of different neurodegenerative syndromes based on structural magnetic resonance imaging.Design, Setting, and Participants Atlas-based volumetry was performed on multi-centric T1weighted MRI data from 940 subjects, i.e. 124 healthy controls and 816 patients with ten different neurodegenerative diseases, leading to a multi-diagnostic multi-class classification task with eleven different classes.Interventions n.a.Main Outcomes and Measures Cohen’s Kappa, Accuracy, and F1-score to assess model performance.Results Over all, the neural network produced both the best performance measures as well as the most robust results. The smaller classes however were better classified by either the ensemble learning methods or the support vector machine, while performance measures for small classes were comparatively low, as expected. Diseases with regionally specific and pronounced atrophy patterns were generally better classified than diseases with wide-spread and rather weak atrophy.Conclusions and Relevance Our study furthermore underlines the necessity of larger data sets but also calls for a careful consideration of different machine learning methods that can handle the type of data and the classification task best.Trial Registration n.a.


2021 ◽  
Author(s):  
Naoto Tokuyama ◽  
Akira Saito ◽  
Ryu Muraoka ◽  
Shuya Matsubara ◽  
Takeshi Hashimoto ◽  
...  

AbstractNon-muscle invasive bladder cancer (NMIBC) generally has a good prognosis; however, recurrence after transurethral resection (TUR), the standard primary treatment, is a major problem. Clinical management after TUR has been based on risk classification using clinicopathological factors, but these classifications are not complete. In this study, we attempted to predict early recurrence of NMIBC based on machine learning of quantitative morphological features. In general, structural, cellular, and nuclear atypia are evaluated to determine cancer atypia. However, since it is difficult to accurately quantify structural atypia from TUR specimens, in this study, we used only nuclear atypia and analyzed it using feature extraction followed by classification using Support Vector Machine and Random Forest machine learning algorithms. For the analysis, 125 patients diagnosed with NMIBC were used; data from 95 patients were randomly selected for the training set, and data from 30 patients were randomly selected for the test set. The results showed that the support vector machine-based model predicted recurrence within 2 years after TUR with a probability of 90% and the random forest-based model with probability of 86.7%. In the future, the system can be used to objectively predict NMIBC recurrence after TUR.


Author(s):  
Marcos Ruiz-Álvarez ◽  
Francisco Alonso-Sarría ◽  
Francisco Gomariz-Castillo

Several methods have been tried to estimate air temperature using satellite imagery. In this paper, the results of two machine learning algorithms, Support Vector Machine and Random Forest, are compared with Multivariate Linear Regression, TVX and Ordinary kriging. Several geographic, remote sensing and time variables are used as predictors. The validation is carried out using four different statistics on a daily basis allowing the use of ANOVA to compare the results. The main conclusion is that Random Forest with residual kriging produces the best results (R$^2$=0.612 $\pm$ 0.019, NSE=0.578 $\pm$ 0.025, RMSE=1.068 $\pm$ 0.027, PBIAS=-0.172 $\pm$ 0.046), whereas TVX produces the least accurate results. The environmental conditions in the study area are not really suited to TVX, moreover this method only takes into account satellite data. On the other hand, regression methods (Support Vector Machine, Random Forest and Multivariate Linear Regression) use several parameters that are easily calculated from a Digital Elevation Model, adding very little difficulty to the use of satellite data alone. The most important variables in the Random Forest Model were satellite temperature, potential irradiation and cdayt, a cosine transformation of the julian day.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
M J Espinosa Pascual ◽  
P Vaquero Martinez ◽  
V Vaquero Martinez ◽  
J Lopez Pais ◽  
B Izquierdo Coronel ◽  
...  

Abstract Introduction Out of all patients admitted with Myocardial Infarction, 10 to 15% have Myocardial Infarction with Non-Obstructive Coronaries Arteries (MINOCA). Classification algorithms based on deep learning substantially exceed traditional diagnostic algorithms. Therefore, numerous machine learning models have been proposed as useful tools for the detection of various pathologies, but to date no study has proposed a diagnostic algorithm for MINOCA. Purpose The aim of this study was to estimate the diagnostic accuracy of several automated learning algorithms (Support-Vector Machine [SVM], Random Forest [RF] and Logistic Regression [LR]) to discriminate between people suffering from MINOCA from those with Myocardial Infarction with Obstructive Coronary Artery Disease (MICAD) at the time of admission and before performing a coronary angiography, whether invasive or not. Methods A Diagnostic Test Evaluation study was carried out applying the proposed algorithms to a database constituted by 553 consecutive patients admitted to our Hospital with Myocardial Infarction. According to the definitions of 2016 ESC Position Paper on MINOCA, patients were classified into two groups: MICAD and MINOCA. Out of the total 553 patients, 214 were discarded due to the lack of complete data. The set of machine learning algorithms was trained on 244 patients (training sample: 75%) and tested on 80 patients (test sample: 25%). A total of 64 variables were available for each patient, including demographic, clinical and laboratorial features before the angiographic procedure. Finally, the diagnostic precision of each architecture was taken. Results The most accurate classification model was the Random Forest algorithm (Specificity [Sp] 0.88, Sensitivity [Se] 0.57, Negative Predictive Value [NPV] 0.93, Area Under the Curve [AUC] 0.85 [CI 0.83–0.88]) followed by the standard Logistic Regression (Sp 0.76, Se 0.57, NPV 0.92 AUC 0.74 and Support-Vector Machine (Sp 0.84, Se 0.38, NPV 0.90, AUC 0.78) (see graph). The variables that contributed the most in order to discriminate a MINOCA from a MICAD were the traditional cardiovascular risk factors, biomarkers of myocardial injury, hemoglobin and gender. Results were similar when the 19 patients with Takotsubo syndrome were excluded from the analysis. Conclusion A prediction system for diagnosing MINOCA before performing coronary angiographies was developed using machine learning algorithms. Results show higher accuracy of diagnosing MINOCA than conventional statistical methods. This study supports the potential of machine learning algorithms in clinical cardiology. However, further studies are required in order to validate our results. FUNDunding Acknowledgement Type of funding sources: None. ROC curves of different algorithms


Sign in / Sign up

Export Citation Format

Share Document