scholarly journals Effect of Deficit Irrigation on Raised Bed Wheat Cultivation

2017 ◽  
Vol 50 (4) ◽  
pp. 17-28 ◽  
Author(s):  
R. Zaman ◽  
A.R. Akanda ◽  
S.K. Biswas ◽  
M.R. Islam

Abstract The experiment was conducted during Rabi season of 2015-2016 and 2016-2017 at the Regional Agricultural Research station, BARI, Ishurdi, Pabna, Bangladesh, to determine the water requirements of wheat on raised bed and the effect of different deficit irrigation on yield, water use efficiency and applied water productivity under raised bed wheat. This study consisted of following irrigation treatments: T1 = Irrigations up to 100% field capacity (FC) at crown root initiation (CRI), botting and grain filling stages (flat bed), T2 = Irrigations up to 100% FC at CRI, botting and grain filling stages on raised bed, T3 = Irrigations up to 80% FC at CRI, botting and grain filling stages on raised bed and T4 = Irrigations up to 60% FC at CRI, botting and grain filling stages on raised bed and laid out in a randomize complete block design with three replications. The result showed that significant effect of irrigation treatments were observed on plant height, spike per m2 and grain yield. Highest grain yield (4.66 t/ha) was obtained from treatment, irrigations up to 100% FC at CRI, botting and grain filling stages on raised bed, followed by irrigation up to 100% FC at same stages on flat bed. At raised bed wheat cultivation saving 14.30% water with increasing 15.66% grain yield than flat bed. Besides, comparing deficit irrigation (20% and 40% of full irrigation) and full irrigation condition on raised bed seeding system water use could be reduced about 4.18% to 5.57%, while scarifying 18.20% to 32.33% grain yield, where reduced 14.17% to 27.54% water use efficiency. Maximum applied water productivity 1.81 kg m−3 was observed in raised bed full irrigation condition. The rate of daily evaporation started to increase as the temperature started to rise and humidity started to decrease during the crop growing period. The results will be helpful for taking policy decision regarding efficient irrigation and water management under prevailing water scarce situation.

2020 ◽  
Vol 6 ◽  
pp. 127-135
Author(s):  
Ekubay Tesfay Gebreigziabher

Irrigation water availability is diminishing in many areas of the Ethiopian regions, which require many irrigators to consider deficit-irrigation strategy. This study investigated the response of maize (Zea mays L.) to moisture deficit under conventional, alternate and fixed furrow irrigation systems combined with three irrigation amounts over a two years period. The field experiment was conducted at Selekleka Agricultural Research Farm of Shire-Maitsebri Agricultural Research Center. A randomized complete block design (RCBD) with three replications was used. Irrigation depth was monitored using a calibrated 2-inch throat Parshall flume. The effects of the treatments were evaluated in terms of grain yield, dry above-ground biomass, plant height, cob length and water use efficiency. The two years combined result indicated that  net irrigation water applied in alternate furrow irrigation with full amount irrigation depth (100% ETc AFI) treatments was half (3773.5 m3/ha) than that of applied to the conventional furrow with full irrigation amount (CFI with 100% ETc) treatments (7546.9 m3/ha). Despite the very significant reduction in irrigation water used with alternate furrow irrigation (AFI), there was insignificant grain yield reduction in maize(8.31%) as compared to control treatment (CFI with100% ETc). In addition, we also obtained significantly (p<0.001) higher crop water use efficiency of 1.889 kg/m3 in alternate furrow irrigation (AFI), than that was obtained as 0.988 kg/m3 in conventional furrow irrigation (CFI). In view of the results, alternate furrow irrigation method (AFI) is taken as promising for conservation of water (3773.5 m3/ha), time (23:22'50" hours/ha), labor (217.36 USD/ha) and fuel (303.79 USD/ha) for users diverting water from the source to their fields using pump without significant trade-off in yield.


HortScience ◽  
2014 ◽  
Vol 49 (10) ◽  
pp. 1284-1291 ◽  
Author(s):  
Chiara Cirillo ◽  
Youssef Rouphael ◽  
Rosanna Caputo ◽  
Giampaolo Raimondi ◽  
Stefania De Pascale

Bougainvillea is widely used as flowering shrub in gardening and landscaping in the Mediterranean region characterized by limited water supply. The evaluation of deficit irrigation as a possible technique to improve water productivity and selection of genotypes that can better withstand soil water deficits are essential for sustainable production. A greenhouse experiment was conducted to determine the effects of deficit irrigation on three potted Bougainvillea genotypes [B. glabra var. Sanderiana, B. ×buttiana ‘Rosenka’, B. ‘Lindleyana’ (=B. ‘Aurantiaca’)] grown in two shapes, globe and pyramid, on agronomical and physiological parameters. Irrigation treatments were based on the daily water use (100%, 50%, or 25%). The shoot, total dry biomass, leaf number, leaf area, and macronutrient [nitrogen (N), phosphorus (P), and potassium (K)] concentration decreased in response to an increase in water stress with the lowest values recorded in the severe deficit irrigation (SDI) treatment. At 160 days after transplanting (DAT), the percentage of total dry biomass reduction caused by irrigation level was lower in B. ×buttiana ‘Rosenka’ compared with B. glabra var. Sanderiana and B. ‘Lindleyana’ (=B. ‘Aurantiaca’). At 160 DAT, the flower index increased in response to an increase in water stress with the highest values recorded under both moderate deficit irrigation (MDI) and SDI for B. ×buttiana ‘Rosenka’. The biomass water use efficiency (WUE) increased under water stress conditions with the highest values recorded in B. glabra var. Sanderiana and B. ×buttiana ‘Rosenka’ grown under MDI (average 1.43 and 1.25 g·L−1, respectively) and especially with SDI (average 1.68 and 1.36 g·L−1, respectively). A number of tolerance mechanisms such as increase in stomatal resistance, decrease in leaf water potential, and decrease in leaf osmotic potential have been observed, especially under SDI. The MDI treatment can be used successfully in Bougainvillea to reduce water consumption while improving the overall quality and WUE, whereas the genotypes B. glabra var. Sanderiana and B. ×buttiana ‘Rosenka’ could be considered suitable for pot plant production.


2016 ◽  
Vol 8 (3) ◽  
pp. 112 ◽  
Author(s):  
David K. Rop ◽  
Emmanuel C. Kipkorir ◽  
John K. Taragon

<p>The broad objective of this study was to test Deficit Irrigation (DI) as an appropriate irrigation management strategy to improve crop water productivity and give optimum onion crop yield. A field trial was conducted with drip irrigation system of six irrigation treatments replicated three times in a randomized complete block design. The crop was subjected to six water stress levels 100% ETc (T100), 90% ETc (T90), 80% ETc (T80), 70% ETc (T70), 60% ETc (T60) and 50% ETc (T50) at vegetative and late season growth stages. The onion yield and quality based on physical characteristics and irrigation water use efficiency were determined. The results indicated that the variation in yield ranged from 34.4 ton/ha to 18.9 ton/ha and the bulb size ranged from 64 mm to 35 mm in diameter for T100 and T50 respectively. Irrigation water use efficiency values decreased with increasing water application level with the highest of 16.2 kg/ha/mm at T50, and the lowest being13.1 kg/ha/mm at T100. It was concluded that DI at vegetative and late growth stages influence yields in a positive linear trend with increasing quantity of irrigation water and decreasing water stress reaching optimum yield of 32.0 ton/ha at 20% water stress (T80) thereby saving 10.7% irrigation water. Onion bulb production at this level optimizes water productivity without significantly affecting yields. DI influenced the size and size distribution of fresh onion bulbs, with low size variation of the fresh bulbs at T80.</p>


1997 ◽  
Vol 48 (5) ◽  
pp. 595 ◽  
Author(s):  
K. L. Regan ◽  
K. H. M. Siddique ◽  
D. Tennant ◽  
D. G. Abrecht

Wheat cultivars with very early maturities appropriate for late sowings in low-rainfall (<325 mm) short-season environments are currently unavailable to wheat growers in the eastern margin of the cropping region of Western Australia. A demonstration that very early-maturing genotypes can out-perform current commercial cultivars would open new opportunities for breeding programs to select very early-maturing, high- and stable-yielding cultivars for these environments. Six field experiments were conducted over 4 seasons at 2 low-rainfall sites in Western Australia to investigate crop growth, grain yield, and water use efficiency of very early-maturing genotypes compared with current commercial cultivars when sown after 1 June. Very early-maturing genotypes reached anthesis up to 24 days (328 degree-days) earlier than the current cultivars, produced less leaves, had similar yields and dry matter, and maintained high water use efficiencies. On average across seasons and locations the very early-maturing genotypes (W87–022–511, W87–114–549, W87–410–509) yielded more than the later maturing cultivars Gamenya and Spear (190 v. 160 g/m2) but they were similar to the early-maturing commercial cultivars Kulin and Wilgoyne (191 g/m2). Very early-maturing genotypes generally had a higher harvest index and produced fewer spikelets, but heavier and more grains, than Kulin and Wilgoyne. There were only small differences in total water use between very early-maturing genotypes and commercial cultivars; however, very early-maturing genotypes used less water in the pre-anthesis period and more water in the post-anthesis period than the later maturing genotypes, and hence, experienced less water deficit during the grain-filling period. This study indicates that there is a role for very early-maturing genotypes in low-rainfall short-season environments, when the first autumn rains arrive late (after 1 June).


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2115
Author(s):  
AbdAllah M. El-Sanatawy ◽  
Salwa M.A.I. Ash-Shormillesy ◽  
Naglaa Qabil ◽  
Mohamed F. Awad ◽  
Elsayed Mansour

Water-deficit stress poses tremendous constraints to sustainable agriculture, particularly under abrupt climate change. Hence, it is crucial to find eco-friendly approaches to ameliorate drought tolerance, especially for sensitive crops such as maize. This study aimed at assessing the impact of seed halo-priming on seedling vigor, grain yield, and water use efficiency of maize under various irrigation regimes. Laboratory trials evaluated the influence of seed halo-priming using two concentrations of sodium chloride solution, 4000 and 8000 ppm NaCl, versus unprimed seeds on seed germination and seedling vigor parameters. Field trials investigated the impact of halo-priming treatments on maize yield and water use efficiency (WUE) under four irrigation regimes comprising excessive (120% of estimated crop evapotranspiration, ETc), normal (100% ETc), and deficit (80 and 60% ETc) irrigation regimes. Over-irrigation by 20% did not produce significantly more grain yield but considerably reduced WUE. Deficit irrigation (80 and 60%ETc) gradually reduced grain yield and its attributes. Halo-priming treatments, particularly 4000 ppm NaCl, improved uniformity and germination speed, increased germination percentage and germination index, and produced more vigorous seedlings with heavier dry weight compared with unprimed seeds. Under field conditions, the plants originated from halo-primed seeds, especially with 4000 ppm NaCl, had higher grain yield and WUE compared with unprimed seeds under deficit irrigation regimes. The long-lasting stress memory induced by seed halo-priming, particularly with 4000 ppm NaCl, promoted maize seedling establishment, grain yield, and WUE and consequently mitigated the devastating impacts of drought stress.


ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
K. Nagaz ◽  
M. M. Masmoudi ◽  
N. Ben Mechlia

A two-year study was conducted in arid region of Tunisia to evaluate the effects of deficit irrigation regimes with saline water on soil salinity, yield, and water use efficiency of onion grown in a commercial farm on a sandy soil and drip-irrigated with water having an of 3.6 dS/m. Irrigation treatments consisted in water replacements of accumulated at levels of 100% (SWB-100, full irrigation), 80% (DI-80), 60% (DI-60), when the readily available water in the control treatment (SWB-100) is depleted, deficit irrigation during ripening stage (SWB100-MDI60) and farmer method corresponding to irrigation practices implemented by the local farmers. Results on onion production and soil salinization are globally coherent between the two-year experiments and show significant difference between irrigation regimes. Higher soil salinity was maintained in the root zone with DI-60 and farmer treatments than full irrigation (SWB-100). SWB100-MDI60 and DI-80 treatments resulted also in low values. No significant differences were observed in bulbs fresh and dry yields, bulbs number·ha−1 and weight from the comparison between full irrigation (SWB-100) and deficit treatments (DI-80, SWB100-MDI60). DI-60 irrigation treatment caused significant reductions in the four parameters considered in comparison with SWB-100. The farmer method caused significant reductions in yield components and resulted in increase of water usage 45 and 33% in 2008 and 2009, respectively. Water use efficiency was found to vary significantly among treatments, where the highest and the lowest values were observed for DI-60 and farmer treatments, respectively. The full irrigation (SWB-100) and deficit irrigation (DI-80 and SWB100-MDI60) strategies were found to be a useful practice for scheduling onion irrigation with saline water under the arid Mediterranean conditions of southern Tunisia.


2006 ◽  
Vol 46 (10) ◽  
pp. 1363 ◽  
Author(s):  
H. G. Beecher ◽  
B. W. Dunn ◽  
J. A. Thompson ◽  
E. Humphreys ◽  
S. K. Mathews ◽  
...  

To remain economically and environmentally sustainable, Australian rice growers need to be able to readily respond to market opportunities and increase cropping system productivity and water productivity. Water availability is decreasing whereas its price is increasing. Alternative irrigation layouts and water management approaches could contribute to reduced water use and increased irrigation efficiency. This paper reports results for the first crop (rice) in a cropping system experiment to compare permanent raised bed and conventional layouts on a transitional red-brown earth at Coleambally, New South Wales. The performance of conventional ponded rice grown on a flat layout was compared with rice grown on 1.84-m wide, raised beds with furrow and subsurface drip irrigation. In addition, deep and shallow ponded water depth treatments (15 and 5 cm water depth over the beds) were imposed on the rice on beds during the reproductive period. A range of nitrogen (N) fertiliser rates (0–180 kg N/ha) was applied to all treatments. The traditional flat flooded treatment (Flat) achieved the highest grain yield of 12.7 t/ha, followed by the deep (Bed 15) and shallow (Bed 5) ponded beds (10.2 and 10.1 t/ha, respectively). The furrow (Furrow) irrigated bed treatment yielded 9.4 t/ha and the furrow/drip (Furr/Drip) treatment yielded the lowest grain yield (8.3 t/ha). Grain yield from all bed treatments was reduced owing to the wide furrows (0.8 m between edge rows on adjacent beds), which were not planted to rice. Rice crop water use was significantly different between the layout–irrigation treatments. The Flat, Bed 5 and Bed 15 treatments had similar input (irrigation + rainfall – surface drainage) water use (mean of 18.3 ML/ha). The water use for the Furrow treatment was 17.2 ML/ha and for the Furr/Drip treatment, 15.1 ML/ha. Input WP of the Flat treatment (0.68 t/ML) was higher than the raised bed treatments, which were all similar (mean 0.55 t/ML). This single season experiment shows that high yielding rice crops can be successfully grown on raised beds, but when beds are ponded after panicle initiation, there is no water saving compared with rice grown on a conventional flat layout. Preliminary recommendations for the growing of rice on raised beds are that the crop be grown as a flooded crop in a bankless channel layout. This assists with weed control and allows flooding for cold temperature protection, which is necessary with current varieties. Until we find effective herbicides and other methods of weed control and N application that do not require ponding, there is little scope for saving water while maintaining yield on suitable rice soil through the use of beds.


2021 ◽  
Vol 5 (5) ◽  
pp. 252-263
Author(s):  
Muhammad Rizwan Shoukat ◽  
Muhammad Shafeeque ◽  
Abid Sarwar ◽  
Kashif Mehmood ◽  
Muhammad Jehanzeb Masud Cheema

Investigating the effects of optimized fertilizer and irrigation levels on water use efficiency and productivity of wheat crop at small farms is of great importance for precise and sustainable agriculture in Pakistan's irrigated areas. However, traditional farmer practices for wheat production are inefficient and unsustainable. This study aimed to investigate the effects of deficit irrigation and nitrophos fertilizer levels on bread wheat grain yield, yield parameters, nutrient use and water use efficiencies in bed planting wheat compared to traditional farmers' practices in the flat sowing method. The two-year field experiment followed a randomized complete block design of three replications, taking three irrigation treatments according to the requirement of crop estimated by CROPWAT model (100% of ETC), deficit irrigation (80% of ETC), and deficit irrigation 60% of ETC and three nitrophos fertilizer treatments (farmer practice 120 kg N ha-1, optimized 96 kg N ha-1, and 84 kg N ha-1) at different growth stages. Crop ETC was calculated using the FAO CROPWAT 8.0 model from the last ten years (2003-2013) average climate data of the experimental station. The traditional farmer practice treatment was included as a control treatment with a flat sowing method compared with other sown-by-bed planter treatments. All treatments were provided with an equivalent amount of fertilizer at the basal dose. Before the first and second irrigation, top-dressing fertilizer was used in traditional farmers' treatment at the third leaf and tillering stages. It was applied in optimized treatments before the first, second, and third irrigation at the third leaf, tillering and shooting stages, respectively, under the bed planting method. The deficit level of irrigation (80% of ETc) and optimized fertilizer (96 kg N ha-1) showed the optimum grain yield, nutrient use, and water use efficiencies, with 20% reduced irrigation water and fertilizer levels than traditional farming practice. The results suggest that bread wheat should be irrigated with 80% of ETC and applied 96 kg N ha-1 nitrophos fertilizer at the third leaf, tillering, and shooting stages to achieve higher grain yield and water and nutrient use efficiencies under bed planting.


2018 ◽  
Vol 10 (1) ◽  
pp. 190-195
Author(s):  
Hari Ram ◽  
Guriqbal Singh ◽  
Navneet Aggarwal ◽  
H. S. Sekhon

A experiment comprising of 18 treatments i.e. two sowing methods (flat bed - 30 cm spacing, and raisedbed with two mungbean (Vigna radiata) rows bed–1 on 67.5 cm including 30 cm furrow), three seed rates (10, 15 and 20 kg ha–1 ) and three nutrient treatments (6.25 + 20.0, 9.38 + 30.0 and 12.5 + 40.0 kg N+P2O5 ha–1 ) was conducted at the Punjab Agricultural University, Ludhiana, India during kharif 2007 to 2009. The mungbean grain yield recorded in 2008 was similar in 2009 but higher than 2007. The increase of 3.94% in grain yield was recorded in raised-bed than in flat bed. The grain yield recorded with seed rate of 20 kg ha–1 was higher than with 10 kg ha–1 but similar with 15 kg ha-1 in 2006 and 2008. The grain yield recorded with 12.5 kg N + 40 kg P2O5 ha–1 was higher (p<0.05) than other treatments. Raised-bed planting with 33.3% lesser irrigation water used recorded 3.91% lesser water use than flat bed planting and 9.77% higher water use efficiency (WUE) (p<0.05) as compared to flat bed planting. Seed rate of 20 kg ha–1 recorded 35.9 and 8.9% higher (p<0.05) WUE than with 10 and 15 kg ha-1 . The highest WUE was recorded with 12.5 kg N + 40 kg P2O5 ha–1 which was higher (p<0.05) than 6.25 kg N + 20 kg P2O5 ha–1 but at par with 9.38 kg N + 24 kg P2O5 ha–1 .


Sign in / Sign up

Export Citation Format

Share Document