The importance of phase composition for corrosion resistance and thermal oxidation behavior of gas-borided layer produced on nickel alloy

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Natalia Makuch ◽  
Piotr Dziarski

Abstract Gas boriding was used to produce the borided layer containing a mixture of chromium and nickel borides on the Inconel®600-alloy. The borided sample was characterized by a higher corrosion potential (−0.953 V) than the non-borided sample (−1.005 V). The corrosion current density was significantly lower for the borided sample. The oxidation at 1000 °C for 24 h caused the formation of different oxides on the surface of the borided sample. Simultaneously, the presence of nickel and chromium borides was confirmed by XRD analysis after the oxidation test. It was concluded, that the gas boriding could be an effective barrier against corrosion and oxidation of Inconel®600-alloy.

2013 ◽  
Vol 803 ◽  
pp. 191-195
Author(s):  
Yun Long Zhang ◽  
Mu Qin Li ◽  
Yu Min Zhang ◽  
Ming Hu

The ceramics coating hadobtained by the micro arc oxidation technology in order to resolve thecorrosion resistance of the Mg alloy.The phase composition, surface morphology,gained weight and polarization behavior of the micro arc oxidation coating wasinvestigated in details. After the introduce of the sodiumcitrate in the electrolyte solution, thespecimen had high relatively positive potential and low corrosion current, sodoped sodium citratewould improve the corrosion resistance properties of the Mg alloy .


2015 ◽  
Vol 61 (2) ◽  
pp. 117-120
Author(s):  
Costin Coman ◽  
◽  
Raluca Monica Comăneanu ◽  
Violeta Hâncu ◽  
Horia Mihail Barbu ◽  
...  

Objectives. In this study we evaluated corrosion resistance of three types of metal alloys (two NiCr and one CoCr). Methods. Samples (coded A, B, C) of circular shape, with dimensions 13 x 1.5 mm, sanded and polished, were introduced in Fusayama Meyer artificial saliva at pH 5.2 and 37 ± 0.5°C and tested in terms of corrosion resistance with a potentiostat/galvanostat (model 4000 PARSTAT, Princeton Applied Research). Results. Open circuit potential EOC [mV] ranged between 21.316 and 5.75. Corrosion potential Ecor [mV] was between -73.536 and -395.662, and the corrosion current density icor [A/cm2] was between 1.237 x 10-6 and 905.13 x 10-9. Conclusion. The best corrosion behavior in Fusayama Meyer artificial saliva at pH 5.2 and at a temperature of 37 ± 0.5°C is the alloy A, followed by the alloy C.


Author(s):  
LiJie Zhang ◽  
Hong Yan ◽  
YongCheng Zou ◽  
BaoBiao Yu ◽  
Zhi Hu

Abstract The effect of adding cerium on the microstructure and acid rain corrosion resistance of the AlSi11Cu3 alloy was investigated by means of optical microscopy, scanning electron microscopy, and energy dispersive spectroscopy. The AlSi11Cu3 alloy was doped with varying stoichiometries of cerium to generate AlSi11Cu3-xCe, where x = 0, 0.5, 1.0, and 1.5 wt.%. The results show that the α-Al, eutectic Si, and β-Al5FeSi phases in the AlSi11Cu3-1.0Ce alloy are significantly refined. Electrochemical tests demonstrated an increase in the self-corrosion potential value of the AlSi11Cu3-1.0Ce alloy from –670 mV to –628 mV relative to the untreated alloy. In addition, the AlSi11Cu3-1.0Ce alloy has the lowest corrosion current density (8.4 μA × cm–2). Immersion corrosion testing on the AlSi11Cu3-1.0Ce alloy revealed a corrosion rate of 0.71 mg × cm–2 × d–1, constituting a 72% reduction in the corrosion rate compared to the untreated alloy. These results indicate that the AlSi11Cu3-1.0Ce alloy has a high resistance to acid rain corrosion, which is the result of a refinement of the cathode phases.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 117 ◽  
Author(s):  
Guoqiang Ma ◽  
Qiongyao He ◽  
Xuan Luo ◽  
Guilin Wu ◽  
Qiang Chen

The effect of recrystallization annealing on corrosion behavior of Ta-4%W alloy was studied. It is found that the deformed sample contains high dense dislocations and dislocation boundaries. During annealing, these dislocations and dislocation boundaries are replaced by recrystallizing grains until the alloy is fully recrystallized. Both the anodic dissolution and the cathodic activity is much more blocked. The corrosion potential gradual shift towards negative values and corrosion current density decrease, while polarization resistance increases after annealing, indicating enhanced corrosion resistance of the alloy. Such an enhancement is caused by the increase of low-Σ coincide site lattice boundaries and decrease of dislocations and dislocation boundaries.


2012 ◽  
Vol 557-559 ◽  
pp. 1857-1860
Author(s):  
Hui Cheng Yu ◽  
Xiao Xiao Huang ◽  
Yi Chun Wei ◽  
Dong Ping Wei

To improve the corrosion resistance of Al alloy, diethylamine (DEA) was added into the sealing solutions. The electrochemical behavior of sealing coatings formed in different concentrations of diethylamine (DEA) was investigated by means of polarization curves and electrochemical impedance spectroscopy (EIS). Compared with the coatings with D. I. water and the bare aluminum alloy, the polarization curves show that the sealing coatings formed in 3.0 – 5.0 ml.L-1 diethylamine (DEA) solutions have more positive corrosion potential (Ecorr) and pitting corrosion potential (Epit), and lower corrosion current density (icorr). Electrochemical parameters of EIS indicate that the sealing coatings have higher corrosion resistance. The electrochemical tests present that the prepared sealing coatings have better corrosion resistance.


2014 ◽  
Vol 633-634 ◽  
pp. 879-882 ◽  
Author(s):  
Jing Dong Qiu ◽  
Su Qiu Jia

Based on the traditional direct electroless nickel methods, chemical baths are improved by removing HF. Examinations have been carried out on the Ni-P deposited on the interlayer for morphology, composition and corrosion-resistance by SEM, EDS, XRD and other instruments. A Ni-P film with fine and dense structure was obtained on the AM60B magnesium alloy. It exhibits lower corrosion current density and more positive corrosion potential than the substrate.


2017 ◽  
Vol 898 ◽  
pp. 826-831
Author(s):  
Y. Yao ◽  
X.Y. Mao ◽  
L.J. Shao ◽  
H. Chen ◽  
H.Y. Yang ◽  
...  

As compared with the untreated one, the low-carbon steel with gradient alloying produced by impact peening showed an increase in corrosion resistance. Specifically, when the corrosion potential increased from-1061 mV to-603.5 mV, the corrosion current density decreased from 1.579×10-3 A/cm2 to 6.703×10-4 A/cm2, the capacitive arc radius increased, and there was no corrosion products viewed on the surface. The improvement in corrosion resistance could be attributed to the diffusion of Cr allowed by the large number of defects induced by the impact peening deformation. This also resulted in the formation of Fe-Cr solid solution, which helped to promote the formation of a passivation film.


2020 ◽  
Vol 9 (1) ◽  
pp. 496-502 ◽  
Author(s):  
Zhaohui Zhang ◽  
Bailong Liu ◽  
Mei Wu ◽  
Longxin Sun

AbstractThe electrochemical behavior of gold dissolution in the Cu2+–NH3–S2O32−–EDTA solution has been investigated in detail by deriving and analyzing the Tafel polarization curve, as this method is currently widely implemented for the electrode corrosion analysis. The dissolution rate of gold in Cu2+–NH3–S2O32−–EDTA solution was determined based on the Tafel polarization curves, and the effects of various compound compositions in a Cu2+–NH3–S2O32−–EDTA mixture on the corrosion potential and corrosion current density were analyzed. The results showed that the corrosion potential and polarization resistance decreased, whereas the corrosion current density increased for certain concentrations of S2O32−–NH3–Cu2+ and EDTA, indicating that the dissolution rate of gold had changed. The reason for promoting the dissolution of gold is also discussed.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 781
Author(s):  
Weiyan Jiang ◽  
Wenzhou Yu

A gradient Mg-8 wt % Si alloy, which was composed of the agglomerated Mg2Si crystals coating (GMS8-1) and the eutectic Mg–Si alloy matrix (GMS8-2), was designed for biodegradable orthopedic implant materials. The bio-corrosion behavior was evaluated by the electrochemical measurements and the immersion tests. The results show that a significant improvement of bio-corrosion resistance was achieved by using the gradient Mg–Si alloy, as compared with the traditional Mg-8 wt % Si alloy (MS8), which should be attributed to the compact and insoluble Mg2Si phase distributed on the surface of the material. Especially, GMS8-1 exhibits the highest polarization resistance of 1610 Ω, the lowest corrosion current density of 1.7 × 10−6 A.cm−2, and the slowest corrosion rate of 0.10 mm/year. In addition, GMS8-1 and GMS8-2 show better osteogenic activity than MS8, with no cytotoxicity to MC3T3-E1 cells. This work provides a new way to design a gradient biodegradable Mg alloys with some certain biological functions.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 37
Author(s):  
Wenzheng Chen ◽  
Wenlong Zhang ◽  
Dongyan Ding ◽  
Daihong Xiao

Microstructural optimization of Al-Li alloys plays a key role in the adjustment of mechanical properties as well as corrosion behavior. In this work, Al-5Cu-1Li-0.6Mg-0.5Ag-0.5Mn alloy was homogenized at different temperatures and holding times, followed by aging treatment. The microstructure and composition of the homogenized alloys and aged alloys were investigated. There were Al7Cu4Li phase, Al3Li phase, and Al2CuLi phases in the homogenized alloys. The Al7Cu4Li phase was dissolved with an increase in homogenization temperature and holding time. Al2Cu phase and Al2CuLi phase coarsened during the homogenization process. The alloy homogenized at 515 °C for 20 h was subjected to a two-stage aging treatment. Peak-age alloy, which had gone through age treatment at 120 °C for 4 h and 180 °C for 6 h, was mainly composed of α-Al, Al20Cu2Mn3, Al2CuLi, Al2Cu, and Al3Li phases. Tafel polarization of the peak-age alloys revealed the corrosion potential and corrosion current density to be −779 mV and 2.979 μA/cm2, respectively. The over-age alloy had a more positive corrosion potential of −658 mV but presented a higher corrosion current of 6.929 μA/cm2.


Sign in / Sign up

Export Citation Format

Share Document