Corrosion characteristics of plasma spray, arc spray, high velocity oxygen fuel, and diamond jet coated 30MnB5 boron alloyed steel in 3.5 wt.% NaCl solution

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bekir Güney ◽  
Yusuf Dilay ◽  
Moses M. Solomon ◽  
Hüsnü Gerengi ◽  
Adem Özkan ◽  
...  

Abstract 30MnB5 boron alloyed steel surface is coated using different coating techniques, namely 60(Ni-15Cr-4.4Si-3.5Fe-3.2B 0.7C)-40(WC 12Co) metallic powder plasma spray, Fe-28Cr-5C-1Mn alloy wire arc spray, WC-10Co-4Cr (thick) powder high velocity oxy-fuel (HVOF), and WC-10Co-4Cr (fine) diamond jet HVOF. The microstructure of the crude steel sample consists of ferrite and pearlite matrices and iron carbide structures. The intermediate binders are well bonded to the substrate for all coated surfaces. The arc spray coated surface shows the formation of lamellae. The cross-section of HVOF and diamond jet HVOF coated surfaces indicates the formation of WC, W2C Cr, and W parent matrix carbide structures. The corrosion characteristic of the coated steel has been investigated in 3.5 wt.% NaCl solution using electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDAX) techniques. The results reveal that the steel corroded in the medium despite the coatings. However, the extent of corrosion varies. HVOF coated sample demonstrated the highest corrosion resistance while arc spray coated sample exhibited the least. EDAX mapping reveals that the elements in the coatings corroded in the order of their standard electrode potential (SEP). Higher corrosion resistance of HVOF coated sample is linked to the low SEP of tungsten.

2013 ◽  
Vol 83 (5) ◽  
pp. 864-869 ◽  
Author(s):  
Elisa J. Kassab ◽  
José Ponciano Gomes

ABSTRACT Objective: To assess the influence of fluoride concentration on the corrosion behavior of nickel titanium (NiTi) superelastic wire and to compare the corrosion resistance of NiTi with that of beta titanium alloy in physiological solution with and without addition of fluoride. Materials and Methods: NiTi corrosion resistance was investigated through electrochemical impedance spectroscopy and anodic polarization in sodium chloride (NaCl 0.15 M) with and without addition of 0.02 M sodium fluoride (NaF), and the results were compared with those associated with beta titanium. The influence of fluoride concentration on NiTi corrosion behavior was assessed in NaCl (0.15 M) with and without 0.02, 0.04, 0.05, 0.07, and 0.12 M NaF solution. Galvanic corrosion between NiTi and beta titanium were investigated. All samples were characterized by scanning electron microscopy. Results: Polarization resistance decreased when NaF concentration was increased, and, depending on NaF concentration, NiTi can suffer localized or generalized corrosion. In NaCl solution with 0.02 M NaF, NiTi suffer localized corrosion, while beta titanium alloys remained passive. Current values near zero were observed by galvanic coupling of NiTi and beta titanium. Conclusions: There is a decrease in NiTi corrosion resistance in the presence of fluoride. The corrosion behavior of NiTi alloy depends on fluoride concentration. When 0.02 and 0.04 M of NaF were added to the NaCl solution, NiTi presented localized corrosion. When NaF concentration increased to 0.05, 0.07, and 0.12 M, the alloy presented general corrosion. NiTi corrosion resistance behavior is lower than that of beta titanium. Galvanic coupling of these alloys does not increase corrosion rates.


2006 ◽  
Vol 530-531 ◽  
pp. 111-116
Author(s):  
M.C.E. Bandeira ◽  
F.D. Prochnow ◽  
Isolda Costa ◽  
César V. Franco

Nd-Fe-B magnets present outstanding magnetic properties. However, due to their low corrosion resistance, their applications are limited to non-corrosive environments. Nowadays, significant efforts are underway to increase the corrosion resistance of these materials, through the use of coatings. Herein are presented the results of a study on the corrosion resistance of Nd-Fe-B magnets coated with polypyrrole (PPY). The electrochemical behavior of coated and uncoated magnets has been studied by Electrochemical Impedance spectroscopy (EIS) in synthetic saliva. The results were compared to previous investigations, which were carried out under similar conditions, in Na2SO4 and NaCl solutions. In sulphate solution, the corrosion resistance of the PPY-coated magnet was 3 times larger (1600 .cm2) than that of uncoated magnet (500 .cm2). In NaCl solution, however, the corrosion resistance of coated and uncoated magnets were very similar (250 .cm2). In synthetic saliva, both the uncoated and coated magnets presented good corrosion performance (1940 .cm2). Such behavior can be attributed to the phosphate ions in saliva, which play a role as corrosion inhibitor, producing phosphating, at least partially, of the magnet surface. The PPY-coated magnets presented a strong diffusional control from moderate to low frequencies, caused by the polypyrrole film. The thicker PPY film increased the corrosion resistance of the magnet in synthetic saliva.


MRS Advances ◽  
2020 ◽  
Vol 5 (40-41) ◽  
pp. 2129-2137 ◽  
Author(s):  
Wenwen Dou ◽  
Wen Li ◽  
Yuchen Cai ◽  
Mengyao Dong ◽  
Xiaojing Wang ◽  
...  

ABSTRACTTo improve the corrosion resistance and to increase the hardness of copper substrate in marine environment, the Cu-Ni/Ni-P composite coatings were prepared on the copper substrate using the galvanostatic electrolytic deposition method. The deposition current densities were explored to find the optimized deposition conditions for forming the composite coatings. Corrosion resistance properties were analyzed using the polarization curves and electrochemical impedance spectroscopy (EIS). Considering the corrosion resistance and hardness, the −20 mA/cm2 was selected to deposit Cu-Ni coatings on copper substrate and the −30 mA/cm2 was selected to deposit Ni-P coating on the Cu-Ni layer. The Cu-Ni/Ni-P composite coatings not only exhibited superior corrosion resistance compared to single Cu-Ni coating in 3.5 wt.% NaCl solution, but also showed much better mechanical properties than single Cu-Ni coating.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 598
Author(s):  
Wenwei Li ◽  
Jun-e Qu ◽  
Zhiyong Cao ◽  
Hairen Wang

The colored films were successfully prepared on the 304 stainless steel surfaces in coloring solutions with different NiSO4 contents. The purpose of this study was to investigate the effects of NiSO4 in the coloring solution on the coloring performance of 304 stainless steel and corrosion resistance of the obtained colored film in NaCl solution. The coloring rate was determined from coloring potential-time curve, and the protection properties of the color films in a 3.5% NaCl solution were characterized by potentiodynamic polarization scan, electrochemical impedance spectroscopy, and wear resistance test. The results showed that adding NiSO4 could accelerate the coloring process but brought about a negative impact on the surface’s corrosion resistance.


2016 ◽  
Vol 63 (5) ◽  
pp. 355-359
Author(s):  
Naghmeh Amirshaqaqi ◽  
Mehdi Salami-Kalajahi ◽  
Mohammad Mahdavian

Purpose The conventional method for evaluation of corrosion resistance of aluminum flakes is based on the volume of evolved hydrogen in acidic and basic environments. This study aims to introduce electrochemical impedance spectroscopy (EIS) as a method to evaluate corrosion resistance of aluminum flakes. Design/methodology/approach Aluminum flakes with different surface modifications were compressed to build a disk. Then, the disks were examined by EIS in NaCl solution. Also, the corrosion resistance of the flakes was evaluated by the conventional method. Findings The results revealed applicability of EIS for evaluation of corrosion resistance of aluminum flakes. Originality/value Application of EIS to evaluate corrosion resistance of aluminum flakes is novel. As it can provide fast, reliable and quantitative estimation of the corrosion resistance of the aluminum flakes in the 3.5 per cent NaCl solution. This medium is highly encountered for the aluminum flakes used in organic coatings, that is why test in NaCl solution is more convenient compared to the conventional methods using acid and alkaline conditions.


2016 ◽  
Vol 877 ◽  
pp. 543-549
Author(s):  
Wei Wei Ren ◽  
Xing Feng Zhan ◽  
Lin Chi Zou ◽  
Qiang Li ◽  
Jun Feng Chen

Effect of heat treatments on the stress corrosion behavior of 7050 Al alloys in 3.5% NaCl solution has been investigated using slow strain rate tensile (SSRT) test. During the slow strain rate tensile process, electrochemical impedance spectroscopy (EIS) in real time was carried out to characterize the electrochemical behavior for different tempers 7050 Al alloys. The investigation shows that both the stress corrosion resistance of 7050 Al alloys is controlled by heat treatments due to the different precipitates state. The improvement of stress corrosion resistance is contributed to the tiny precipitates in matrix which are beneficial to corrosion potential and maintain passivation, and precipitates discontinuous distribution at grain boundary which obstruct intergranular crack connection. Moreover, base on the results, we find out retrogression and re-aging (RRA, i.e., T6 + 200 °C/ retrogression + water quench + T6) increases both tensile strength and stress corrosion resistance. The optimized of retrogression time is 30 minutes.


2014 ◽  
Vol 633-634 ◽  
pp. 817-820
Author(s):  
Ping Liang ◽  
Yun Xia Zhang ◽  
Yan Hua Shi

To improve the corrosion resistance of Ni-P electroless coating, the KI was added in the electroless solution. The surface micrograph was observed using scanning electron microscopy (SEM), and the corrosion resistance of Ni-P coatings in 3.5%NaCl solution was examined by polarization curves and electrochemical impedance spectroscopy (EIS). The experimental results showed that KI reduced the amount of defects and the size of crystal grain of Ni-P coating, and the surface of Ni-P coating became more homogenous, smoother and compact by KI. In addition, the phosphorus content of Ni-P coating was increased by KI. These factors increased the ability to corrosion protection of Ni-P coating.


2011 ◽  
Vol 299-300 ◽  
pp. 427-431
Author(s):  
Yun Li ◽  
Shi Zhi Shang ◽  
Ming Cheng ◽  
Liang Xu ◽  
Shi Hong Zhang

The corrosion behavior of Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy in 3.5% NaCl solution was investigated by using potentiodynamic polarization experiments and electrochemical impedance spectroscopy (EIS). The results show that Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy has the better corrosion resistance than its corresponding crystal alloy. During the bath in the 3.5% NaCl solution at 25°C, Zr53.5Cu26.5Ni5Al12Ag3 alloy has the lower corrosion current density than the corresponding crystal alloy. After 100h, the corrosion current densities of Zr53.5Cu26.5Ni5Al12Ag3 and the corresponding crystal alloy are 3.8415×10-8A/cm2 and 5.2827×10-7A/cm2, respectively. The results of EIS test indicate that Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy has the excellent corrosion resistance because passive film with stable structure formed on the surface in 3.5% NaCl solution. With an increase in the immersion time, the passive film becomes thicker. It leads to impedance resistance and corrosion resistance decrease. The surface of Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy in 3.5% NaCl solution for 100h was analyzed by SEM and EDS. The results show that the corrosive pitting can be found at both the amorphous alloy and the corresponding crystal alloy. However, the amorphous alloy has the better corrosive pitting resistance than the crystal one because the corrosion products formed by selective dissolving of Zr and Al elements. Moreover, the addition of Ag element helps to improve the corrosion resistance of the amorphous alloy greatly.


2021 ◽  
Vol 882 ◽  
pp. 35-49
Author(s):  
A.D. Vishwanatha ◽  
Bijayani Panda ◽  
J.N. Balaraju ◽  
Preeti Prakash Sahoo ◽  
P. Shreyas

Corrosion behavior of three carbon steels with increasing galvanized coating thickness of 5.6, 8.4 and 19.2 μm named as T1, T2 and T3, respectively, was studied by immersion test, potentiodynamic polarization and electrochemical impedance spectroscopy in freely aerated 3.5% NaCl solution. The major phase in the corrosion product of all the samples after immersion test was found to be zincite, as determined by X-Ray Diffraction and Fourier Transform Infrared Spectroscopy techniques. The corrosion product on sample T1was well adhered and was compact in most regions. Samples T2 and T3 showed porous and non-adherent growth of corrosion product. Corrosion rates were found to increase with increasing coating thickness. The impedance provided by the coating as well as the substrate was the highest for the sample with thinnest coating (T1). The early exposure of the underlying steel in sample T1 resulted in higher corrosion resistance, which was probably due to the combined effect of zinc corrosion products and Fe-Zn alloy layer. Higher amount of protective γ-FeOOH as well as compact corrosion product could have also improved the corrosion resistance of sample T1. Although the average uniform corrosion resistance was higher for T1, the localized pitting corrosion was also observed, probably due to the thin galvanized layer.


Author(s):  
Harun Mindivan

A hardening of high velocity oxy-fuel sprayed Inconel 625 coating systems was performed by pulsed plasma nitriding treatment. After deposition of an Inconel 625 coating, samples were pulsed plasma nitrided at 520 °C for 12 h in a gas ratio of 3:1 N2 and H2 under a constant pressure of 2.5 × 102 Pa. Pulsed plasma nitriding improved the microhardness of the high velocity oxy-fuel sprayed Inconel 625 coating from 355 to 401 HV0.05. The high velocity oxy-fuel-sprayed Inconel 625 coating after pulsed plasma nitriding process showed excellent corrosion resistance as well as a reduction of both the friction coefficient and wear rate during the sliding phase in a 3.5 wt.% NaCl solution against sliding action of Al2O3 ball.


Sign in / Sign up

Export Citation Format

Share Document