Automorphism groups of 3-dimensional complex tori

1999 ◽  
Vol 1999 (508) ◽  
pp. 99-125 ◽  
Author(s):  
Ch Birkenhake ◽  
V González ◽  
H Lange

Abstract We compute all finite automorphism groups of three-dimensional complex tori which are maximal in the isogeny class. The maximal order of such an automorphism group is 1296.

2007 ◽  
Vol 14 (02) ◽  
pp. 351-359 ◽  
Author(s):  
Chuixiang Zhou ◽  
Yan-Quan Feng

For a prime p, let D4p be the dihedral group 〈a,b | a2p = b2 = 1, b-1ab = a-1〉 of order 4p, and Cay (G,S) a connected cubic Cayley graph of order 4p. In this paper, it is shown that the automorphism group Aut ( Cay (G,S)) of Cay (G,S) is the semiproduct R(G) ⋊ Aut (G,S), where R(G) is the right regular representation of G and Aut (G,S) = {α ∈ Aut (G) | Sα = S}, except either G = D4p (p ≥ 3), Sβ = {b,ab,apb} for some β ∈ Aut (D4p) and [Formula: see text], or Cay (G,S) is isomorphic to the three-dimensional hypercube Q3[Formula: see text] and G = ℤ4 × ℤ2 or D8.


Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


Author(s):  
Neil Rowlands ◽  
Jeff Price ◽  
Michael Kersker ◽  
Seichi Suzuki ◽  
Steve Young ◽  
...  

Three-dimensional (3D) microstructure visualization on the electron microscope requires that the sample be tilted to different positions to collect a series of projections. This tilting should be performed rapidly for on-line stereo viewing and precisely for off-line tomographic reconstruction. Usually a projection series is collected using mechanical stage tilt alone. The stereo pairs must be viewed off-line and the 60 to 120 tomographic projections must be aligned with fiduciary markers or digital correlation methods. The delay in viewing stereo pairs and the alignment problems in tomographic reconstruction could be eliminated or improved by tilting the beam if such tilt could be accomplished without image translation.A microscope capable of beam tilt with simultaneous image shift to eliminate tilt-induced translation has been investigated for 3D imaging of thick (1 μm) biologic specimens. By tilting the beam above and through the specimen and bringing it back below the specimen, a brightfield image with a projection angle corresponding to the beam tilt angle can be recorded (Fig. 1a).


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3887
Author(s):  
Watcharapong Pudkon ◽  
Chavee Laomeephol ◽  
Siriporn Damrongsakkul ◽  
Sorada Kanokpanont ◽  
Juthamas Ratanavaraporn

Three-dimensional (3D) printing is regarded as a critical technology in material engineering for biomedical applications. From a previous report, silk fibroin (SF) has been used as a biomaterial for tissue engineering due to its biocompatibility, biodegradability, non-toxicity and robust mechanical properties which provide a potential as material for 3D-printing. In this study, SF-based hydrogels with different formulations and SF concentrations (1–3%wt) were prepared by natural gelation (SF/self-gelled), sodium tetradecyl sulfate-induced (SF/STS) and dimyristoyl glycerophosphorylglycerol-induced (SF/DMPG). From the results, 2%wt SF-based (2SF) hydrogels showed suitable properties for extrusion, such as storage modulus, shear-thinning behavior and degree of structure recovery. The 4-layer box structure of all 2SF-based hydrogel formulations could be printed without structural collapse. In addition, the mechanical stability of printed structures after three-step post-treatment was investigated. The printed structure of 2SF/STS and 2SF/DMPG hydrogels exhibited high stability with high degree of structure recovery as 70.4% and 53.7%, respectively, compared to 2SF/self-gelled construct as 38.9%. The 2SF/STS and 2SF/DMPG hydrogels showed a great potential to use as material for 3D-printing due to its rheological properties, printability and structure stability.


Author(s):  
So Young Joo ◽  
Seung Yeol Lee ◽  
Yoon Soo Cho ◽  
Sangho Yi ◽  
Cheong Hoon Seo

Abstract Hands are the part of the body that are most commonly involved in burns, and the main complications are finger joint contractures and nerve injuries. Hypertrophic scarring cannot be avoided despite early management of acute hand burn injuries, and some patients may need application of an exoskeleton robot to restore hand function. To do this, it is essential to individualize the customization of the robot for each patient. Three-dimensional (3D) technology, which is widely used in the field of implants, anatomical models, and tissue fabrication, makes this goal achievable. Therefore, this report is a study on the usefulness of an exoskeleton robot using 3D technology for patients who lost bilateral hand function due to burn injury. Our subject was a 45-year-old man with upper limb dysfunction of 560 days after a flame and chemical burn injury, with resultant impairment of manual physical abilities. After wearing an exoskeleton robot made using 3D printing technology, he could handle objects effectively and satisfactorily. This innovative approach provided considerable advantages in terms of customization of size and reduction in manufacturing time and costs, thereby showing great potential for use in patients with hand dysfunction after burn injury.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Naomi Andrew

AbstractWe provide some necessary and some sufficient conditions for the automorphism group of a free product of (freely indecomposable, not infinite cyclic) groups to have Property (FA). The additional sufficient conditions are all met by finite groups, and so this case is fully characterised. Therefore, this paper generalises the work of N. Leder [Serre’s Property FA for automorphism groups of free products, preprint (2018), https://arxiv.org/abs/1810.06287v1]. for finite cyclic groups, as well as resolving the open case of that paper.


2020 ◽  
Vol 21 (15) ◽  
pp. 5499
Author(s):  
Hannah L. Smith ◽  
Stephen A. Beers ◽  
Juliet C. Gray ◽  
Janos M. Kanczler

Treatment for osteosarcoma (OS) has been largely unchanged for several decades, with typical therapies being a mixture of chemotherapy and surgery. Although therapeutic targets and products against cancer are being continually developed, only a limited number have proved therapeutically active in OS. Thus, the understanding of the OS microenvironment and its interactions are becoming more important in developing new therapies. Three-dimensional (3D) models are important tools in increasing our understanding of complex mechanisms and interactions, such as in OS. In this review, in vivo animal models, in vitro 3D models and in ovo chorioallantoic membrane (CAM) models, are evaluated and discussed as to their contribution in understanding the progressive nature of OS, and cancer research. We aim to provide insight and prospective future directions into the potential translation of 3D models in OS.


2006 ◽  
Vol 71 (1) ◽  
pp. 203-216 ◽  
Author(s):  
Ermek S. Nurkhaidarov

In this paper we study the automorphism groups of countable arithmetically saturated models of Peano Arithmetic. The automorphism groups of such structures form a rich class of permutation groups. When studying the automorphism group of a model, one is interested to what extent a model is recoverable from its automorphism group. Kossak-Schmerl [12] show that if M is a countable, arithmetically saturated model of Peano Arithmetic, then Aut(M) codes SSy(M). Using that result they prove:Let M1. M2 be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then SSy(M1) = SSy(M2).We show that if M is a countable arithmetically saturated of Peano Arithmetic, then Aut(M) can recognize if some maximal open subgroup is a stabilizer of a nonstandard element, which is smaller than any nonstandard definable element. That fact is used to show the main theorem:Let M1, M2be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then for every n < ωHere RT2n is Infinite Ramsey's Theorem stating that every 2-coloring of [ω]n has an infinite homogeneous set. Theorem 0.2 shows that for models of a false arithmetic the converse of Kossak-Schmerl Theorem 0.1 is not true. Using the results of Reverse Mathematics we obtain the following corollary:There exist four countable arithmetically saturated models of Peano Arithmetic such that they have the same standard system but their automorphism groups are pairwise non-isomorphic.


2021 ◽  
pp. 105566562110363
Author(s):  
Jiuli Zhao ◽  
Hengyuan Ma ◽  
Yongqian Wang ◽  
Tao Song ◽  
Chanyuan Jiang ◽  
...  

Objective Palatoplasty would involve the structures around the pterygoid hamulus. However, clinicians hold different opinions on the optimal approach for the muscles and palatine aponeurosis around the pterygoid hamulus. The absence of a consensus regarding this point can be attributed to the lack of investigations on the exact anatomy of this region. Therefore, we used micro-computed tomography to examine the anatomical structure of the region surrounding the pterygoid hamulus. Design Cadaveric specimens were stained with iodine–potassium iodide and scanned by micro-computed tomography to study the structures of the tissues, particularly the muscle fibers. We imported Digital Imaging and Communications in Medicine images to Mimics to reconstruct a 3-dimensional model and simplified the model. Results Three muscles were present around the pterygoid hamulus, namely the palatopharyngeus (PP), superior constrictor (SC), and tensor veli palatini (TVP). The hamulus connects these muscles as a key pivot. The TVP extended to the palatine aponeurosis, which bypassed the pterygoid hamulus, and linked the PP and SC. Some muscle fibers of the SC originated from the hamulus, the aponeurosis of which was wrapped around the hamulus. There was a distinct gap between the pterygoid hamulus and the palatine aponeurosis. This formed a pulley-like structure around the pterygoid hamulus. Conclusions Transection or fracture of the palatine aponeurosis or pterygoid hamulus, respectively, may have detrimental effects on the muscles around the pterygoid hamulus, which play essential roles in the velopharyngeal function and middle ear ventilation. Currently, cleft palate repair has limited treatment options with proven successful outcomes.


Author(s):  
Maureen J. Murray ◽  
Thomas R. Canfield

Abstract The flexible link and sprocket system of a tracked vehicle was modeled as part of a supercomputing pilot project on a Cray X-MP supercomputer. This computer simulation model utilizes the ADAMS 3-dimensional rigid body dynamics code. Using this ADAMS model of the track system, engineers can simulate the complex action of this three dimensional mechanism, and, through the use of graphics, can illustrate the behavior of the interaction of the components in this track system.


Sign in / Sign up

Export Citation Format

Share Document