scholarly journals The Use of LCA Method to Assess Environmental Impact of Sewage Sludge Incineration Plants

2017 ◽  
Vol 24 (2) ◽  
pp. 263-275
Author(s):  
Grzegorz Wielgosiński ◽  
Robert Cichowicz ◽  
Agata Targaszewska ◽  
Jacek Wiśniewski

Abstract Life Cycle Assessment (LCA) is one of the new, little more popular in Poland of elements of environmental management. In the world literature one can find many examples of the use of LCA but mainly for comparison purposes. The paper presents results of LCA analysis made on the basis of data from a running incineration of sewage sludge. Performing a thorough analysis of this process enables improved operational system, including through a better use of the resulting products of combustion, as well as determining the impact of the thermal treatment of sludge on the environment and compared the results with data from the literature. To date, in Poland has not been carried out environmental impact assessments and the process of thermal treatment of both sludge and waste, based on the assumptions of LCA.

2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


2021 ◽  
Vol 13 (13) ◽  
pp. 7386
Author(s):  
Thomas Schaubroeck ◽  
Simon Schaubroeck ◽  
Reinout Heijungs ◽  
Alessandra Zamagni ◽  
Miguel Brandão ◽  
...  

To assess the potential environmental impact of human/industrial systems, life cycle assessment (LCA) is a very common method. There are two prominent types of LCA, namely attributional (ALCA) and consequential (CLCA). A lot of literature covers these approaches, but a general consensus on what they represent and an overview of all their differences seems lacking, nor has every prominent feature been fully explored. The two main objectives of this article are: (1) to argue for and select definitions for each concept and (2) specify all conceptual characteristics (including translation into modelling restrictions), re-evaluating and going beyond findings in the state of the art. For the first objective, mainly because the validity of interpretation of a term is also a matter of consensus, we argue the selection of definitions present in the 2011 UNEP-SETAC report. ALCA attributes a share of the potential environmental impact of the world to a product life cycle, while CLCA assesses the environmental consequences of a decision (e.g., increase of product demand). Regarding the second objective, the product system in ALCA constitutes all processes that are linked by physical, energy flows or services. Because of the requirement of additivity for ALCA, a double-counting check needs to be executed, modelling is restricted (e.g., guaranteed through linearity) and partitioning of multifunctional processes is systematically needed (for evaluation per single product). The latter matters also hold in a similar manner for the impact assessment, which is commonly overlooked. CLCA, is completely consequential and there is no limitation regarding what a modelling framework should entail, with the coverage of co-products through substitution being just one approach and not the only one (e.g., additional consumption is possible). Both ALCA and CLCA can be considered over any time span (past, present & future) and either using a reference environment or different scenarios. Furthermore, both ALCA and CLCA could be specific for average or marginal (small) products or decisions, and further datasets. These findings also hold for life cycle sustainability assessment.


Author(s):  
Javiera Barandiarán

Neoliberal environmental policies operate through markets, including for carbon, water, ecosystem services, or—as in contemporary Chile—for environmental scientific knowledge. Chile illustrates how markets for science operate, such as for monitoring data or environmental impact assessments, and their negative impacts on public trust in science and on the state’s regulatory efforts. In a society governed by a market for science, environmental scientists cannot escape the suspicion that conflicts of interest compromise their independence and the credibility of their work. Chile’s neoliberal 1980 Constitution sustains this market for knowledge but will be reformed following national demonstrations in 2019. The health of Chile’s environment depends on a new constitution that democratizes both democracy and science. Rights of nature doctrines, as in Ecuador’s 2008 Constitution, can provide the constitutional foundation for strong mutual accountability between science, the state, society, and nature.


2021 ◽  
Vol 12 (5) ◽  
pp. 6504-6515

With the development of additive manufacturing technology, 3D bone tissue engineering scaffolds have evolved. Bone tissue engineering is one of the techniques for repairing bone abnormalities caused by a variety of circumstances, such as injuries or the need to support damaged sections. Many bits of research have gone towards developing 3D bone tissue engineering scaffolds all across the world. The assessment of the environmental impact, on the other hand, has received less attention. As a result, the focus of this study is on developing a life cycle assessment (LCA) model for 3D bone tissue engineering scaffolds and evaluating potential environmental impacts. One of the methodologies to evaluating a complete environmental impact assessment is life cycle assessment (LCA). The cradle-to-grave method will be used in this study, and GaBi software was used to create the analysis for this study. Previous research on 3D bone tissue engineering fabrication employing poly(ethylene glycol) diacrylate (PEGDA) soaked in dimethyl sulfoxide (DMSO), and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as a photoinitiator will be reviewed. Meanwhile, digital light processing (DLP) 3D printing is employed as the production technique. The GaBi program and the LCA model developed to highlight the potential environmental impact. This study shows how the input and output of LCA of 3D bone tissue engineering scaffolds might contribute to environmental issues such as air, freshwater, saltwater, and industrial soil emissions. The emission contributing to potential environmental impacts comes from life cycle input, electricity and transportation consumption, manufacturing process, and material resources. The results from this research can be used as an indicator for the researcher to take the impact of the development of 3D bone tissue engineering on the environment seriously.


2013 ◽  
Vol 4 (2) ◽  
pp. 103-109 ◽  
Author(s):  
E. Klaversma ◽  
A. W. C. van der Helm ◽  
J. W. N. M. Kappelhof

Waternet, the water cycle company of Amsterdam and surrounding areas, uses the life cycle assessment (LCA) method to evaluate the environmental impact of investment decisions and to determine the potential reduction of direct and indirect greenhouse gas (GHG) emissions of different alternatives. This approach enables Waternet to fulfil its corporate objective to improve sustainability and to become climate neutral by 2020. Three example studies that give a good overview of the use of LCAs at Waternet and problems encountered are discussed: phosphate removal and recovery from wastewater, pH correction of drinking water with carbon dioxide (CO2) and materials for drinking water distribution pipes. The environmental impact assessments were performed in SimaPro 7 using the ReCiPe method and the Intergovernmental Panel on Climate Change Global Warming Potential (IPCC GWP) 100a method. The Ecoinvent 2.0 and 2.2 databases were used for the material and process data. From the examples described, it can be concluded that only the phosphate removal case had a significant effect on the climate footprint. The article discusses applications and limitations of the LCA technique. The most important limitation is that the impact of water consumption and the possible impact of effluent compounds to surface water are not considered within the used methods.


2019 ◽  
Vol 26 (4) ◽  
pp. 546-566
Author(s):  
Raquel Orcos ◽  
Sergio Palomas

Purpose The purpose of this paper is to explore how national cultures contribute to explain the uneven diffusion of ISO 14001 across countries. The paper focuses on two of the cultural dimensions developed by the global leadership and organizational behavior effectiveness (GLOBE) project, namely, performance orientation and institutional collectivism. Design/methodology/approach A database containing information about the diffusion of ISO 14001 in 52 countries during the period 1999–2016 was built to carry out this research. The countries considered in this study represent about 90 percent of worldwide ISO 14001 certifications. The information was gathered from publicly available data sources: the ISO Survey, published every year by the International Organization for Standardization, the world development indicators of the World Bank, the cultural dimensions of the GLOBE project and the Index of Economic Freedom provided by The Heritage Foundation. Findings This research finds that both performance orientation and institutional collectivism influence the diffusion of ISO 14001. Whereas performance orientation slows down the diffusion of ISO 14001, institutional collectivism speeds it up. Additionally, this research shows that the slowing effect of performance orientation decreases in strength over time, while the accelerating effect of institutional collectivism becomes stronger. Originality/value The study adds to the understanding of the influence of national culture on the diffusion of environmental management standards, with an emphasis on ISO 14001. A key contribution of this research is that it explores how the influence of cultural dimensions change over time as a result of the development and maturation of ISO 14001.


1994 ◽  
Vol 34 (1) ◽  
pp. 741 ◽  
Author(s):  
M. L. Williams ◽  
A. J. Boulton ◽  
M. Hyde ◽  
A. J. Kinnear ◽  
C. D. Cockshell

The Department of Mines and Energy, South Australia (DME) contracted Michael Williams and Associates Pty Ltd to audit the environmental management of seismic exploration operations in the South Australian Otway Basin. The audit was carried out in early 1992 and covered petroleum exploration operators and DME environmental management systems. An innovative field sampling technique was developed to compare the environmental impact of two different seismic line clearing techniques. Recovery of native vegetation as measured by vegetation structure was also quantified.The audit found DME to have a dynamic and integrated environmental management system while company systems varied in standard. Wide consultation assisted the audit process.As a result of clearing for agriculture, native vegetation covers only six per cent of the Otway Basin. With the strict limitations to broad-scale vegetation clearance since the mid-1980s and the cessation since 1991, the greatest environmental impact of seismic exploration is the clearance of native vegetation for access by seismic vehicles. Native vegetation structure and associated abiotic variables on seismic lines and adjacent control sites, were subject to a classification and ordination analysis which compared the impact of seismic lines constructed by bulldozer or Hydro-ax (industrial slasher). Post-seismic recovery rates of three different vegetation associations were also determined. This analytical technique permits the effects of seismic line clearance to be compared with the natural variability of specific vegetation associations within a region. In interpreting the results however, there is a confounding effect of line type and year as most of the more recent seismic lines were constructed using a Hydro-ax. Results indicate that Hydro-ax clearing affects vegetation structure less than bulldozing. Most Hydro-ax sites recovered within a few years whereas some sites, bulldozed as early as 1971, particularly tussock grasslands, have not yet recovered.This study provides a significant break-through in the debate about the persistence of seismic impacts on native vegetation. As a rapid preliminary assessment, sampling vegetation structure rather than floristics, provides a cost-effective audit and monitoring technique which can be used by non-specialists in a range of petroleum exploration environments. Any significant structural differences may require more detailed analysis to determine if floristic composition also differed.


1997 ◽  
Vol 36 (11) ◽  
pp. 251-258 ◽  
Author(s):  
Bernd Wiebusch ◽  
Carl Franz Seyfried

Several aspects of using ashes from sewage sludge incineration in the brick and tile industry have been examined. After discussing the item of ash production in Germany, the impact of different wastewater treatment methods is described; for instance, the use of precipitation agents containing iron will considerably influence the ash quality. Depending on their respective chemical composition, different ashes have different effects on the ceramic qualities of the bricks made of clay blended with ashes. These effects will be shown in regard to the major ceramic parameters. Similarly, the quality of the ashes also influences the elution behaviour and the mineral fixation of heavy metals.


2005 ◽  
Vol 895 ◽  
Author(s):  
Antonia Moropoulou ◽  
Christopher Koroneos ◽  
Maria Karoglou ◽  
Eleni Aggelakopoulou ◽  
Asterios Bakolas ◽  
...  

AbstractOver the years considerable research has been conducted on masonry mortars regarding their compatibility with under restoration structures. The environmental dimension of these materials may sometimes be a prohibitive factor in the selection of these materials. Life Cycle Assessment (LCA) is a tool that can be used to assess the environmental impact of the materials. LCA can be a very useful tool in the decision making for the selection of appropriate restoration structural material. In this work, a comparison between traditional type of mortars and modern ones (cement-based) is attempted. Two mortars of traditional type are investigated: with aerial lime binder, with aerial lime and artificial pozzolanic additive and one with cement binder. The LCA results indicate that the traditional types of mortars are more sustainable compared to cementbased mortars. For the impact assessment, the method used is Eco-indicator 95


Sign in / Sign up

Export Citation Format

Share Document