scholarly journals Base Station Energy Efficiency Improvement for Next Generation Mobile Networks

2017 ◽  
Vol 63 (2) ◽  
pp. 187-194 ◽  
Author(s):  
Weston Mwashita ◽  
Marcel Ohanga Odhiambo

Abstract As more and more Base Stations (BSs) are being deployed by mobile operators to meet the ever increasing data traffic, solutions have to be found to try and reduce BS energy consumption to make the BSs more energy efficient and to reduce the mobile networks’ operational expenditure (OPEX) and carbon dioxide emissions. In this paper, a BS sleeping technology deployable in heterogeneous networks (HetNets) is proposed. The proposed scheme is validated by using extensive OMNeT++/SimuLTE simulations. From the simulations, it is shown that some lightly loaded micro BSs can be put to sleep in a HetNet when the network traffic is very low without compromising the QoS of the mobile network.

Author(s):  
Battulga Davaasambuu

The rapidly-growing number of mobile subscribers has led to the creation of a large number of signalling messages. This makes it difficult to efficiently handle the mobility of subscribers in mobile cellular networks. The long-term evolution (LTE) architecture provides software-defined networking (SDN) to meet the requirements of 5G networks and to forward massive mobile data traffic. The SDN solution proposes separation of the control and data planes of a network. Centralized mobility management (CMM) is widely used in current mobile network technologies, such as 4G networks. One of the problems related to CMM is a single point of failure. To solve the problems of CMM and in order to provide for efficient mobility management, IETF has developed a solution called distributed mobility management (DMM), in which mobility is handled via the nearest mobility anchor. In this paper, we propose a DMM solution with handover operations for SDN-enabled mobile networks. The advantage of the proposed solution is that intra and inter handover procedures are defined with the data buffering and forwarding processes between base stations and mobility anchors. We adopt a simulation model to evaluate and compare the proposed solution with the existing solution in terms of handover latency, packet loss and handover failures.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Kozo Satoda ◽  
Eiji Takahashi ◽  
Takeo Onishi ◽  
Takayuki Suzuki ◽  
Daisuke Ohta ◽  
...  

Large demands for mobile traffic subject base stations to frequent short-term and sharp peak loads. Recent analysis of data traffic on commercial mobile networks reported that the traffic peaks can be reduced by an average of 40% without compromising the quality of experience provided to the end user, if a peak load can be shifted for at most 20 s. To reduce peak traffic, we previously proposed a method for off-peak data transfer, with which user equipment (UE) autonomously delays receiving data, and a peak load on a base station can be shifted. In terms of off-peak transfer of data, a significant problem is determining how each UE estimates available throughput. In this paper we propose a method of passively estimating available throughput of each UE. We evaluated the effectiveness of the proposed method through experiments on experimental and commercial LTE networks. The results indicate that our method obtains more than a 0.7 correlation between actual available throughput and estimated throughput.


Telecom IT ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 44-54
Author(s):  
A. Grebenshchikova ◽  
Elagin V.

The paper considers the data traffic based on slicing in a 5g mobile network uplink system. Slicing is a promising technology for the fifth generation of networks that provides optimal quality of QOS services for each specific user or group of users. Data traffic that is processed by cellular networks increases every year. Therefore, we should consider all set of traffic from VoIP to M2M devices. For example, smart devices in the healthcare system transmit big data that is sensitive to latency, but also a video stream that requires minimal latency in certain cases. The paper focuses on the successful processing of traffic through a relay node, donor microstates, and a base station. All traffic is divided into three levels of QoS segmentation: sensitive, less sensitive, and low-sensitivity, using the AnyLogic simulation program. For fifth-generation 5G networks, achieving minimum latency and maximum data transfer speed within QoS is an important implementation condition. Therefore, in this paper, using simulation modeling, the main and possible results of each segment in the new generation of mobile networks are obtained. The use of a relay node in conjunction with micro-stations can ensure optimal station load and successful data processing. Also, the solutions outlined in this paper will allow you to identify a number of areas for future research to assess possible ways to design new mobile networks, or improve existing ones.


Author(s):  
Battulga Davaasambuu

The rapidly-growing number of mobile subscribers has led to the creation of a large number of signalling messages. This makes it difficult to efficiently handle the mobility of subscribers in mobile cellular networks. The long-term evolution (LTE) architecture provides software-defined networking (SDN) to meet the requirements of 5G networks and to forward massive mobile data traffic. The SDN solution proposes separation of the control and data planes of a network. Centralized mobility management (CMM) is widely used in current mobile network technologies, such as 4G networks. One of the problems related to CMM is a single point of failure. To solve the problems of CMM and in order to provide for efficient mobility management, IETF has developed a solution called distributed mobility management (DMM), in which mobility is handled via the nearest mobility anchor. In this paper, we propose a DMM solution with handover operations for SDN-enabled mobile networks. The advantage of the proposed solution is that intra and inter handover procedures are defined with the data buffering and forwarding processes between base stations and mobility anchors. We adopt a simulation model to evaluate and compare the proposed solution with the existing solution in terms of handover latency, packet loss and handover failures.


2020 ◽  
Vol 9 (4) ◽  
pp. 53
Author(s):  
Basma Mahdy ◽  
Hazem Abbas ◽  
Hossam Hassanein ◽  
Aboelmagd Noureldin ◽  
Hatem Abou-zeid

Mobile network traffic is increasing in an unprecedented manner, resulting in growing demand from network operators to deploy more base stations able to serve more devices while maintaining a satisfactory level of service quality. Base stations are considered the leading energy consumer in network infrastructure; consequently, increasing the number of base stations will increase power consumption. By predicting the traffic load on base stations, network optimization techniques can be applied to decrease energy consumption. This research explores different machine learning and statistical methods capable of predicting traffic load on base stations. These methods are examined on a public dataset that provides records of traffic loads of several base stations over the span of one week. Because of the limited number of records in the dataset for each base station, different base stations are grouped while building the prediction model. Due to the different behavior of the base stations, forecasting the traffic load of multiple base stations together becomes challenging. The proposed solution involves clustering the base stations according to their behavior and forecasting the load on the base stations in each cluster individually. Clustering the time series data according to their behavior mitigates the dissimilar behavior problem of the time series when they are trained together. Our findings demonstrate that predictions based on deep recurrent neural networks perform better than other forecasting techniques.


Author(s):  
V. Lyandres

Introduction:Effective synthesis of а mobile communication network includes joint optimisation of two processes: placement of base stations and frequency assignment. In real environments, the well-known cellular concept fails due to some reasons, such as not homogeneous traffic and non-isotropic wave propagation in the service area.Purpose:Looking for the universal method of finding a network structure close to the optimal.Results:The proposed approach is based on the idea of adaptive vector quantization of the network service area. As a result, it is reduced to a 2D discrete map split into zones with approximately equal number of service requests. In each zone, the algorithm finds such coordinates of its base station that provide the shortest average distance to all subscribers. This method takes into account the shortage of the a priory information about the current traffic, ensures maximum coverage of the service area, and what is not less important, significantly simplifies the process of frequency assignment.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3584
Author(s):  
Milembolo Miantezila Junior ◽  
Bin Guo ◽  
Chenjie Zhang ◽  
Xuemei Bai

Cellular network operators are predicting an increase in space of more than 200 percent to carry the move and tremendous increase of total users in data traffic. The growing of investments in infrastructure such as a large number of small cells, particularly the technologies such as LTE-Advanced and 6G Technology, can assist in mitigating this challenge moderately. In this paper, we suggest a projection study in spectrum sharing of radar multi-input and multi-output, and mobile LTE multi-input multi-output communication systems near m base stations (BS). The radar multi-input multi-output and mobile LTE communication systems split different interference channels. The new approach based on radar projection signal detection has been proposed for free interference disturbance channel with radar multi-input multi-output and mobile LTE multi-input multi-output by using a new proposed interference cancellation algorithm. We chose the channel of interference with the best free channel, and the detected signal of radar was projected to null space. The goal is to remove all interferences from the radar multi-input multi-output and to cancel any disturbance sources from a chosen mobile Communication Base Station. The experimental results showed that the new approach performs very well and can optimize Spectrum Access.


2020 ◽  
Vol 17 (1) ◽  
pp. 51-70
Author(s):  
Jesús Calle-Cancho ◽  
José-Manuel Mendoza-Rubio ◽  
José-Luis González-Sánchez ◽  
David Cortés-Polo ◽  
Javier Carmona-Murillo

The number of mobile subscribers, as well as the data traffic generated by them, is increasing exponentially with the growth of wireless smart devices and the number of network services that they can support. This significant growth is pushing mobile network operators towards new solutions to improve their network performance and efficiency. Thus, the appearance of Software Defined Networking (SDN) can overcome the limitations of current deployments through decoupling the network control plane from the data plane, allowing higher flexibility and programmability to the network. In this context, the process of handling user mobility becomes an essential part of future mobile networks. Taking advantage of the benefits that SDN brings, in this article we present a novel mobility management solution. This proposal avoids the use of IP-IP tunnels and it adds the dynamic flow management capability provided by SDN. In order to analyse performance, an analytical model is developed to compare it with NB-DMM (Network-based DMM), one of the main DMM (Distributed Mobility Management) solutions. Additionally, performance is also evaluated with an experimental testbed. The results allow handover latency in real scenarios and numerical investigations to be measured, and also show that SR-DMM achieves better efficiency in terms of signaling and routing cost than NB-DMM solution.


Author(s):  
Alexandra Bousia ◽  
Elli Kartsakli ◽  
Angelos Antonopoulos ◽  
Luis Alonso ◽  
Christos Verikoukis

Reducing the energy consumption in wireless networks has become a significant challenge, not only because of its great impact on the global energy crisis, but also because it represents a noteworthy cost for telecommunication operators. The Base Stations (BSs), constituting the main component of wireless infrastructure and the major contributor to the energy consumption of mobile cellular networks, are usually designed and planned to serve their customers during peak times. Therefore, they are more than sufficient when the traffic load is low. In this chapter, the authors propose a number of BSs switching off algorithms as an energy efficient solution to the problem of redundancy of network resources. They demonstrate via analysis and by means of simulations that one can achieve reduction in energy consumption when one switches off the unnecessary BSs. In particular, the authors evaluate the energy that can be saved by progressively turning off BSs during the periods when traffic decreases depending on the traffic load variations and the distance between the BS and their associated User Equipments (UEs). In addition, the authors show how to optimize the energy savings of the network by calculating the most energy-efficient combination of switched off and active BSs.


Author(s):  
Alberto Díez Albaladejo ◽  
Fabricio Gouveia ◽  
Marius Corici ◽  
Thomas Magedanz

Next Generation Mobile Networks (NGMNs) constitute the evolution of mobile network architectures towards a common IP based network. One of the main research topics in wireless networks architectures is QoS control and provisioning. Different approaches to this issue have been described. The introduction of the NGMNs is a major trend in telecommunications, but the heterogeneity of wireless accesses increases the challenges and complicates the design of QoS control and provisioning. This chapter provides an overview of the standard architectures for QoS control in Wireless networks (e.g. UMTS, WiFi, WiMAX, CDMA2000), as well as, the issues on this all-IP environment. It provides the state-of-the-art and the latest trends for converging networks to a common architecture. It also describes the challenges that appear in the design and deployment of QoS architectures for heterogeneous accesses and the available solutions. The Evolved Core from 3GPP is analyzed and described as a suitable and promising solution addressing these challenges.


Sign in / Sign up

Export Citation Format

Share Document