Mobile network synthesis strategy

Author(s):  
V. Lyandres

Introduction:Effective synthesis of а mobile communication network includes joint optimisation of two processes: placement of base stations and frequency assignment. In real environments, the well-known cellular concept fails due to some reasons, such as not homogeneous traffic and non-isotropic wave propagation in the service area.Purpose:Looking for the universal method of finding a network structure close to the optimal.Results:The proposed approach is based on the idea of adaptive vector quantization of the network service area. As a result, it is reduced to a 2D discrete map split into zones with approximately equal number of service requests. In each zone, the algorithm finds such coordinates of its base station that provide the shortest average distance to all subscribers. This method takes into account the shortage of the a priory information about the current traffic, ensures maximum coverage of the service area, and what is not less important, significantly simplifies the process of frequency assignment.

2021 ◽  
Vol 20 ◽  
pp. 108-111
Author(s):  
Vladimir Lyandres

Effective design of mobile communication network includes optimization of two bounded together processes: the network base stations placement and the channel assignment. In real environments the well-known cellular concept fails due to not uniformly spaced traffic and not isotropic wave propagation. We find a rather universal method for synthesis of a close to optimal network structure. The proposed design approach is based on the idea of adaptive vector quantization for a map with random traffic. As a result, the service zone of the network becomes discrete and is being transformed to a map with not equal cells and approximately equal number of requests in every one. This fact allows to apply the simplest periodic reuse pattern. The algorithm finds a point with minimal average Euclidean distance from all its requests. This point defines optimal placement of the corresponding base station. The approach guarantees maximum coverage


2017 ◽  
Vol 63 (2) ◽  
pp. 187-194 ◽  
Author(s):  
Weston Mwashita ◽  
Marcel Ohanga Odhiambo

Abstract As more and more Base Stations (BSs) are being deployed by mobile operators to meet the ever increasing data traffic, solutions have to be found to try and reduce BS energy consumption to make the BSs more energy efficient and to reduce the mobile networks’ operational expenditure (OPEX) and carbon dioxide emissions. In this paper, a BS sleeping technology deployable in heterogeneous networks (HetNets) is proposed. The proposed scheme is validated by using extensive OMNeT++/SimuLTE simulations. From the simulations, it is shown that some lightly loaded micro BSs can be put to sleep in a HetNet when the network traffic is very low without compromising the QoS of the mobile network.


Since the number of mobile users has been increased, there comes a number of new mobile operators. This accounts for the increased installation of towers. A critical mobile network consume 40-50MW (approx.) and a diesel generator consume 1MG (approx.) of diesel per day. Also a base station requires greater amount of power employed for its working in which some of its internal applications like light, coolant systems say air conditioning, fans etc., uses the major part of the power utilized. This intensifies the burning of coal which emits carbon dioxide into the atmosphere. At times the number of users for a base station may be very less especially during night time, consuming the power unnecessarily. Our approach is to reduce the intake of power by the base stations during unwanted time. This can be done by establishing communication between the adjacent towers to intimate the unused tower to remain idle or active based on the requirement. Also this approach conveys the measures taken to reduce the power consumed by the internal applications of the base station. The entire setup is under the surveillance of personal computer thereby creating an energy efficient mobile infrastructure with power saving, reduction of CO2 emission which in turn reduces global warming and successful operation of large scale mobile communication services.


Author(s):  
D. O. Makoveenko ◽  
S. V. Siden ◽  
V. V. Pyliavskyi

Context. The aim of the article is to analyze the throughput of the LTE-A mobile network on the uplink using an adaptive linear equidistant antenna array. Objective. Suggestions have been made for the possibility of using adaptive antenna arrays to increase bandwidth in LTE-A mobile networks and analyze the benefits of its use compared to the standard type of base station antenna Method. To achieve this result, a computer model of noise analysis of the mobile network in the form of a flat regular hexagonal antenna array consisting of 7 three-sector cells was developed. To estimate the benefit from the use of adaptive antenna arrays, two options were analyzed: when using a standard antenna array of the LTE-A network, and an adaptive linear equidistant antenna array. During the simulation, 100 random placements of subscribers of useful and interference signals were performed and the minimum, maximum and average gain from the use of adaptive antenna arrays was calculated. The average value of the gain for the adaptive antenna array in the direction of the subscriber station, which generates a useful signal of 5.69 dB more than the standard antenna array of the LTE-A network. At the same time, there is a significant reduction in the gain of the adaptive antenna in the direction of the interference subscriber stations, namely, for those with the highest interference level, the gain is 32.84 dB and 28.33 dB, respectively. To clearly show the gain in the qualitative characteristics of the network, a bandwidth analysis was performed for different types of antennas. The bandwidth distribution (transport block size) for 50 resource blocks using an adaptive equidistant linear antenna array compared to a standard antenna array is presented. Results. It is shown that due to the use of adaptive antenna systems, the average bandwidth increases from 11 Mbit/s to 35 Mbit / s for all types of distribution considered channels. Conclusions. The article proposes the use of adaptive antenna arrays to increase the bandwidth of the LTE-A network. The simulation of bandwidth for 50 resource blocks showed that in the presence of internal system interference when using standard antennas of base stations, the average bandwidth is from 11.2 Mbps to 12.3 Mbps. At the same time, due to the use of adaptive antenna systems, the average bandwidth increases from 11 Mbit/s to 35 Mbit/s for all types of multipath channels considered.


2018 ◽  
Vol 184 (2) ◽  
pp. 211-215
Author(s):  
Marthinus Jacobus van Wyk ◽  
Jacobus Christiaan Visser ◽  
Christiaan Wynand le Roux

Abstract As mobile network technologies and usage change, mobile network cells have become smaller to meet the increased demand for data throughput. Small cell base stations are frequently used as a mobile network deployment method and are predominantly installed to service areas with a high density of people and to cover a small geographical area. Various measurement programs of the electromagnetic field (EMF) exposure have been conducted around base stations in general and these results have been published. There is, however, little data available on the EMF exposure levels around small cells. A measurement program was conducted to perform EMF exposure measurements around small cell base station sites. Results are compared to the relevant safety guidelines and to available data for EMF exposure around base stations in general.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
G. Koutitas ◽  
L. Chiaraviglio ◽  
Delia Ciullo ◽  
M. Meo ◽  
L. Tassiulas

We compare the performance of three base station management schemes on three different network topologies. In addition, we explore the effect of offloading traffic to heterogeneous femtocell layer upon energy savings taking into account the increase of base station switch-off time intervals. Fairness between mobile operator and femtocell owners is maintained since current femtocell technologies present flat power consumption curves with respect to served traffic. We model two different user-to-femtocell association rules in order to capture realistic and maximum gains from the heterogeneous network. To provide accurate findings and a holistic overview of the techniques, we explore a real urban district where channel estimations and power control are modeled using deterministic algorithms. Finally, we explore energy efficiency metrics that capture savings in the mobile network operator, the required watts per user and watts per bitrate. It is found that the newly established pseudo distributed management scheme is the most preferable solution for practical implementations and together with the femotcell layer the network can handle dynamic load control that is regarded as the basic element of future demand response programs.


Author(s):  
Josip Lorincz ◽  
Ivana Bule

An overview of research activity in the area of powering base station sites by means of renewable energy sources is given. It is shown that mobile network operators express significant interest for powering remote base stations using renewable energy sources. This is because a significant percentage of remote base station sites on the global level are still diesel powered due to lack of connections to the electricity grid. Besides huge expenses that mobile operators pay for diesel fuel and its transport to base station sites, it is pointed out that such base station sites represent major pollutants due to enormous green-house gas emissions. Since base stations are major consumers of cellular networks energy with significant contribution to operational expenditures, powering base stations sites using the energy of wind, sun, fuel cells or a combination gain mobile operators’ attention. It is shown that powering base station sites with such renewable energy sources can significantly reduce energy costs and improve the energy efficiency of the base station sites in rural areas. In addition, technical descriptions of the different power supply systems based on renewable sources with corresponding energy controllers for scheduling the flow of energy to power base station sites are discussed. According to the presented, hybrid systems which combine different renewable energy sources outperform those with only one energy source, and depend on the configuration of base stations installed on a particular site, such systems can offer autonomous functionality throughout the year.


2020 ◽  
Vol 9 (4) ◽  
pp. 53
Author(s):  
Basma Mahdy ◽  
Hazem Abbas ◽  
Hossam Hassanein ◽  
Aboelmagd Noureldin ◽  
Hatem Abou-zeid

Mobile network traffic is increasing in an unprecedented manner, resulting in growing demand from network operators to deploy more base stations able to serve more devices while maintaining a satisfactory level of service quality. Base stations are considered the leading energy consumer in network infrastructure; consequently, increasing the number of base stations will increase power consumption. By predicting the traffic load on base stations, network optimization techniques can be applied to decrease energy consumption. This research explores different machine learning and statistical methods capable of predicting traffic load on base stations. These methods are examined on a public dataset that provides records of traffic loads of several base stations over the span of one week. Because of the limited number of records in the dataset for each base station, different base stations are grouped while building the prediction model. Due to the different behavior of the base stations, forecasting the traffic load of multiple base stations together becomes challenging. The proposed solution involves clustering the base stations according to their behavior and forecasting the load on the base stations in each cluster individually. Clustering the time series data according to their behavior mitigates the dissimilar behavior problem of the time series when they are trained together. Our findings demonstrate that predictions based on deep recurrent neural networks perform better than other forecasting techniques.


Author(s):  
Natalya Ivanovna Shaposhnikova ◽  
Alexander Aleksandrovich Sorokin

The article consideres the problems of determining the need to modernize the base stations of the cellular network based on the mathematical apparatus of the theory of fuzzy sets. To improve the quality of telecommunications services the operators should send significant funding for upgrading the equipment of base stations. Modernization can improve and extend the functions of base stations to provide cellular communication, increase the reliability of the base station in operation and the functionality of its individual elements, and reduce the cost of maintenance and repair when working on a cellular network. The complexity in collecting information about the equipment condition is determined by a large number of factors that affect its operation, as well as the imperfection of obtaining and processing the information received. For a comprehensive assessment of the need for modernization, it is necessary to take into account a number of indicators. In the structure of indicators of the need for modernization, there were introduced the parameters reflecting both the degree of aging and obsolescence(the technical gap and the backlog in connection with the emergence of new technologies and standards). In the process of a problem solving, the basic stages of decision-making on modernization have been allocated. Decision-making on the need for modernization is based not only on measuring information that takes into account the decision-makers, but also on linguistic and verbal information. Therefore, to determine the need for upgrading the base stations, the theory of fuzzy sets is used, with the help of which experts can be attracted to this issue. They will be able to formulate additional fuzzy judgments that help to take into account not only measuring characteristics, but also poorly formalized fuzzy information. To do this, the main indicators of the modernization need have been defined, and fuzzy estimates of the need for modernization for all indicators and a set of indicators reflecting the need for upgrading the base stations have been formulated.


1977 ◽  
Vol 12 (1) ◽  
pp. 51-76
Author(s):  
B. Bobée ◽  
D. Cluis ◽  
A. Tessier

Abstract A water quality sampling programme for James Bay territory established in a previous study has been carried out for the Department of Natural Resources of the Province of Quebec. The network is composed of 5 base-stations, sampled every fortnight to determine the variability with time of the parameters and 16 satellite-stations, sampled five times yearly with a view to determine the spatial variability. The data (major ions and certain nutrients) gathered during the 1974–1975 field survey are subjected to an analysis by a multivariate technique (correspondence analysis) in addition to certain classical statistical methods. The latter have shown that the mean values obtained at satellite stations were representative of the annual mean. In addition, the results permit the determination for a given parameter, of the relationship between stations and, for a given station, the relationship between parameters. In both cases, the formulation of predictive equations was attempted. An overall evaluation of the data by correspondence analysis has permitted: - a more precise definition of the qualitative behaviour of the different sub-basins of the James Bay territory and characterization of their waters;- a proof of the existence of gradual concentration changes in both East-West and North-South directions. Within the original objectives of the network, the results of the study have led to the following recommendations: - to continue synchronised samplings;- to transform a base station with a low information content into a satellite station;- to create a new base station in the eastern part of the territory.


Sign in / Sign up

Export Citation Format

Share Document