scholarly journals Comparison of energy parameters of a centrifugal pump with a multi-piped impeller in cooperation either with an annular channel and a spiral channel

2018 ◽  
Vol 8 (1) ◽  
pp. 513-522 ◽  
Author(s):  
Bartłomiej Chomiuk ◽  
Janusz Skrzypacz

Abstract The article presents results of numerical analyzes, which raise a subject of influence of the cooperation the multi-piped impeller with a rationalized flow geometry of annular casing and volute casing for liquid flow through centrifugal pump and their operating parameters in the extremely low specific speed nq<10. The multi-piped impeller (patented by authors) is a major alternative to classic vane impellers. The stator type is responsible for the conversion of the kinetic energy of the liquid by the impeller outlet into potential energy, which determines the overall efficiency of the pump. Also, the article presents qualitative and quantitative verification of results obtained by computer modeling and an attempt to estimate their accuracy. The article focuses mainly on the comparison of the performance parameters of the pump with a multi-piped impeller in cooperation with two stator types with a rationalized flow geometry. Both outlet elements were tested in various configurations of constructional features. The complexity of the construction of the stator can significantly affect the manufacturing costs of pump unit. Knowledge concerning construction of hydraulic elements of centrifugal pumps working in the range of parameters corresponding specific speed (nq<10) is insufficient. As shown in the paper, the annular type casing model pump cooperating with a multi-piped impeller, designed in accordance with literature, reached far poorer operating parameters than the rational annular construction in a configuration with the same impeller.

2021 ◽  
Vol 9 (2) ◽  
pp. 121
Author(s):  
Yang Yang ◽  
Ling Zhou ◽  
Hongtao Zhou ◽  
Wanning Lv ◽  
Jian Wang ◽  
...  

Marine centrifugal pumps are mostly used on board ship, for transferring liquid from one point to another. Based on the combination of orthogonal testing and numerical simulation, this paper optimizes the structure of a drainage trough for a typical low-specific speed centrifugal pump, determines the priority of the various geometric factors of the drainage trough on the pump performance, and obtains the optimal impeller drainage trough scheme. The influence of drainage tank structure on the internal flow of a low-specific speed centrifugal pump is also analyzed. First, based on the experimental validation of the initial model, it is determined that the numerical simulation method used in this paper is highly accurate in predicting the performance of low-specific speed centrifugal pumps. Secondly, based on the three factors and four levels of the impeller drainage trough in the orthogonal test, the orthogonal test plan is determined and the orthogonal test results are analyzed. This work found that slit diameter and slit width have a large impact on the performance of low-specific speed centrifugal pumps, while long and short vane lap lengths have less impact. Finally, we compared the internal flow distribution between the initial model and the optimized model, and found that the slit structure could effectively reduce the pressure difference between the suction side and the pressure side of the blade. By weakening the large-scale vortex in the flow path and reducing the hydraulic losses, the drainage trough impellers obtained based on orthogonal tests can significantly improve the hydraulic efficiency of low-specific speed centrifugal pumps.


2014 ◽  
Vol 6 ◽  
pp. 814108 ◽  
Author(s):  
Baocheng Shi ◽  
Jinjia Wei

For numerically simulating 3D solid-liquid turbulent flow in low specific speed centrifugal pumps, the iteration convergence problem caused by complex internal structure and high rotational speed of pump is always a problem for numeral simulation researchers. To solve this problem, the combination of three measures of dynamic underrelaxation factor adjustment, step method, and rotational velocity control means according to residual curves trends of operating parameters was used to improve the numerical convergence. Numeral simulation of 3D turbulent flow in a low specific speed solid-liquid centrifugal pump was performed, and the results showed that the improved solution strategy is greatly helpful to the numerical convergence. Moreover, the 3D turbulent flow fields in pumps have been simulated for the bottom ash-particles with the volume fraction of 10%, 20%, and 30% at the same particle diameter of 0.1 mm. The two-phase calculation results are compared with those of single-phase clean water flow. The calculated results gave the main region of the abrasion of the impeller and volute casing and improve the hydraulic design of the impeller in order to decrease the abrasion and increase the service life of the pump.


Author(s):  
M DaqiqShirazi ◽  
R Torabi ◽  
A Riasi ◽  
SA Nourbakhsh

In this paper, the flow in the impeller sidewall gap of a low specific speed centrifugal pump is analyzed to study the effect of wear ring clearance and the resultant through-flow on flow field in this cavity and investigate the overall efficiency of the pump. Centrifugal pumps are commonly subject to a reduction in the flow rate and volumetric efficiency due to abrasive liquids or working conditions, since the wear rings are progressively worn, the internal leakage flow is increased. In the new operating point, the overall efficiency of the pump cannot be predicted simply by using the pump characteristic curves. The flow field is simulated with the use of computational fluid dynamics and the three-dimensional full Navier–Stokes equations are solved using CFX software. In order to verify the numerical simulations, static pressure field in volute casing and pump performance curves are compared with the experimental measurements. The results show that, for the pump with minimum wear ring clearance, the disk friction efficiency is the strongest factor that impairs the overall efficiency. Therefore, when the ring clearance is enlarged more than three times, although volumetric efficiency decreases effectively but the reduction in overall efficiency is remarkably smaller due to improvement in the disk friction losses.


Author(s):  
Alberto Tamm ◽  
Bernd Stoffel

Among the losses arising in low specific speed pumps, the disc friction and leakage losses are especially important. These losses arise due to the flow through unavoidable gaps and side spaces (SS) between impeller and casing. To predict these losses, normally simple correlations and empirical formulas are used. The following analysis was intended to study the effects of the radial clearance of the sealing gaps as well as of the surface roughness of the wetted surfaces within the SS, which may have an essential impact on the losses of centrifugal pumps.


Author(s):  
Xiang Zhang ◽  
Yang Wang ◽  
Jianhui Fu ◽  
Cui Dai ◽  
Caihong Wang

The volute of low specific speed centrifugal pumps has a great impact on the performance of the pump in that the highest efficiency can only be achieved when the impeller is matched with a well-designed volute. At off-BEP conditions, the performance of pumps declines as a consequence of a mismatch between characteristics of the impeller and the volute. The section area is the most important factor of volute. Numerical simulations and experimental researches have been carried out on the routine-designed impeller and the non-overloading designed impeller (different impeller outlet blade angle between two types of impellers) in the hope of finding out the effect of the section area of volute on low specific speed centrifugal pumps. It has been found that the uneven flow rate on different volute sections caused by the backflow between volute and impeller is one of the reasons for the efficiency decline of pumps at off-BEP conditions, especially in the low flow rate condition. It has also been found that the routine-designed impeller is more easily affected by the section area of volute than non-overloading designed impeller.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Grunde Olimstad ◽  
Morten Osvoll ◽  
Pål Henrik Enger Finstad

For low-flow and high-head applications, pump types such as progressive cavity or gear pumps are often used. However, centrifugal pumps are much more robust and wear resistant, and are beneficial if they can handle the rated head and flows. By challenging the limitations of low specific speed (Nq), centrifugal pumps can be made to handle a combination of low flow and high head, which previously required other pump types. Conventional centrifugal pumps have specific speed down to 10, while in this paper a design with specific speed of 4.8 is presented. The paper describes several iterative steps in the design process of the low Nq pump. These iterations were done one physical pumps, which were successively tested in a test rig. Motivation for each step is explained theoretically and followed up by discussion of the measured results. Four different geometries of the pump were tested, all of them manufactured by rapid prototyping in nylon material. A substantial question is how low the specific speed of a centrifugal pump can be. Limitations of low Nq pumps are discussed and new findings are related to volute cavitation. In addition, limitations due to disk friction, volute losses, leakage flow, and pump stability are discussed and show to limit the design space for the pump designer.


2014 ◽  
Vol 6 ◽  
pp. 678271
Author(s):  
Baocheng Shi ◽  
Jinjia Wei

For numerically simulating 3D solid-liquid turbulent flow in low specific speed centrifugal pumps, there exist several problems including how to design geometrical shape of the calculation model to represent the real pump and how to predict pump performance accurately to guide the design of pump. To solve these problems, four kinds of geometric models were designed. The performance of a low specific speed solid-liquid centrifugal pump was predicted, and the results showed that the improved prediction methods are more accurate than the traditional method. Moreover, the simulation results of the entire flow field of the geometric model including balance holes and the lateral clearances of impeller in which liquid rotates with half speed of impeller are closer to the real situation.


Author(s):  
Yu-Liang Zhang ◽  
Wen-Guang Li

Reasonable methods for determining the optimum number of blades in a low specific speed centrifugal pump with closed-type impeller with splitters, i.e. compound impeller have been rather rare in the literature so far. In the article, a new analytical method was put forward to determine such an optimum number of blades by including the effect of turbulent boundary layer over impeller blades. Three conventional impellers with different numbers of full-length blades and two compound impellers with different numbers of splitters were designed and manufactured. The corresponding performance tests were then conducted. Results showed that the optimum numbers of blades exist for two kinds of impeller in terms of head at design point, pump efficiencies at design point and best efficiency point, and slope of head-flow rate curve at shut-off point. The estimated optimum numbers of blades are in good agreement with the numbers based on the experiments. The conventional impellers with full-length blades are more prone to the hump phenomenon than the compound impellers at the optimum numbers of blades. For the compound impellers, however, the hump effect is negligible at the optimum number of blades, and their head and efficiency are higher than those for the impellers with full-length blades. The method is applicable to compound impeller design in low specific speed centrifugal pumps.


Author(s):  
Yandong Gu ◽  
Shouqi Yuan ◽  
Ji Pei ◽  
Jinfeng Zhang ◽  
Fan Zhang ◽  
...  

To investigate the effects of the main blades and splitter blades interacting with the volute tongue on the internal flow in a low-specific-speed centrifugal pump, the Reynolds-averaged Navier–Stokes equation, coupled with SST k-ω turbulence model, is employed to simulate the transient turbulent flow in the whole flow passage. The numerical simulation results have been verified with the experimental measurements by comparing the head and efficiency. The pressure fluctuation caused by impeller–volute tongue interaction, including time–history and frequency characteristics, is calculated and analyzed at five monitoring points adjoining the impeller outlet and tongue, as well as the torque of a single main blade and a single splitter blade. After that, both the energy loss and vorticity distributions on the middle section are discussed when the impeller rotates to four circumferential positions relative to the cutwater. The results show that the maximum pressures at the monitoring points occur before the blades reach the closest circumferential position with respect to the cutwater, and the peak pressure near the trailing edge of splitter blades is larger than main blades. There is only one torque peak of a single blade in one revolution when the angle between the monitoring blade and tongue is about 15°. Additionally, the torque peak arises before the torque valley, but the pressure valley at monitoring points in the impeller comes earlier than the pressure peak. Both the energy loss and vorticity are enlarged around the volute tongue evidently after the blades pass by the cutwater, and the splitter blades produce more unsteadiness and energy dissipation than main blades.


Author(s):  
Jinfeng Zhang ◽  
Ye Yuan ◽  
Shouqi Yuan ◽  
Weigang Lu ◽  
Jianping Yuan

For a low specific speed centrifugal pump with the requirement of high efficiency of 68% and non-overload power characteristics, series experimental studies, by matching 9 volutes with 19 impellers were done. By combining the former research results about the splitters and the non-overload theory in centrifugal pump, the theoretical conditions to achieve the property of non-overload in a centrifugal pump with splitters was analyzed, and formulas to estimate the maximum shaft power and its position are derived. Based on the requirement of high efficiency and non-overload, blade outlet angle β2, blade outlet width b2, volute throat are Ft and the inlet diameter of splitters Di were chosen with three levels to design a normal L9 (34) orthogonal test scheme. After the optimized design scheme was determined, and corresponding test was done also, it demonstrates that the experiment purpose was achieved and the design method to combine the splitters and non-overload theory is reasonable, which can get the property of high efficiency and non-overload. A BP artificial neural network (BPANN) model was built to predict the efficiency and head of centrifugal pumps with splitters in MATLAB toolbox. Eighty five groups of test results were used to train and test the network model, where the Levenberg–Marquardt algorithm was adopted to train the neural network model. Five parameters Q, Z, β2, Di, b2 were chosen as the input layer parameters, η and H were the output factors. Through the analysis of prediction results, the conclusion was got that, the accuracy of the BP ANN is good enough for performance prediction. And the BP ANN can be used for assisting design of centrifugal pumps with splitters, which can shorten research time and cost.


Sign in / Sign up

Export Citation Format

Share Document