Synthesis and application of functionalized ionic liquids as solvent to corn stalk for phenolic resin modification

e-Polymers ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 195-201 ◽  
Author(s):  
Liying Guo ◽  
Bin Zhang ◽  
Shiyang Bai ◽  
Xiuyun Ma ◽  
Zhiming Wang

AbstractThree functionalized ionic liquids (ILs) of [HeMIM]Cl, [CeMIM]Cl, and [AeMIM]Br that can dissolve corn stalk were synthesized and characterized via Fourier transform infrared spectroscopy (FTIR) and 1H NMR. The dissolved corn stalk was in situ blended with phenol and formaldehyde to produce modified phenolic resin composites. The resulting composites were characterized via FTIR, differential scanning calorimetry, and X-ray diffraction analysis, and tested for their mechanical properties. In addition, the effects of ILs on the dissolution rate of corn stalks and on the mechanical properties of the modified phenolic resin were investigated as well. The results showed that the synthesized ILs presented good solubility toward corn stalk at the optimum temperature of 90°C. After modification with corn stalk dissolved in ILs, the mechanical properties of phenolic resin were significantly improved. At the same conditions, the phenolic resin modified with [AeMIM]Br presented the lowest concentration of free formaldehyde and the best mechanical properties, in which the tensile strength and impact strength were improved from 3.28 MPa and 0.93 kJ/m2 to 9.36 MPa and 5.74 kJ/m2, respectively, but the hardness only changed slightly.

e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Ahmad Banihashemi ◽  
Mohammad Reza Vakili

AbstractA pyridine-based diacid containing ether linkage was synthesized via reaction of 2,6-dichloropyridine with 3-hydroxybenzoic acid in presence of potassium hydroxide in dimethyl sulfoxide (DMSO). The corresponding diacid chloride was synthesized by reaction of the diacid with oxalyl chloride. New poly (amide-ether)s were prepared by solution polycondensation reaction of the prepared diacid chloride with different commercial aromatic diamines. The synthesized polymers were characterized by elemental analysis, IR, and 1H NMR spectra, wide-angle X-ray diffraction, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC); inherent viscosity and solubility were studied. These polymers showed high thermal stability and good solubility.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zaiqiang Feng ◽  
Mingqi Tang ◽  
...  

This present work investigates the effects of sintering temperature on densification, mechanical properties and microstructure of Al-based alloy pressed by high-velocity compaction. The green samples were heated under the flow of high pure (99.99 wt%) N2. The heating rate was 4 °C/min before 315 °C. For reducing the residual stress, the samples were isothermally held for one h. Then, the specimens were respectively heated at the rate of 10 °C/min to the temperature between 540 °C and 700 °C, held for one h, and then furnace-cooled to the room temperature. Results indicate that when the sintered temperature was 640 °C, both the sintered density and mechanical properties was optimum. Differential Scanning Calorimetry, X-ray diffraction of sintered samples, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and Transmission Electron Microscope were used to analyse the microstructure and phases.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Shahram Mehdipour-Ataei ◽  
Leila Akbarian-Feizi

AbstractA diamine monomer containing ester, amide and ether functional groups was prepared and its polymerization reaction with different diisocyanates to give main chain poly(ester amide ether urea)s was investigated. The monomer was synthesized via reaction of terephthaloyl chloride with 4-hydroxybenzoic acid and subsequent reaction of the resulted diacid with 1,8-diamino-3,6-dioxaoctane. The polymers were characterized by FT-IR and 1H-NMR spectroscopic method and elemental analysis. The resulting polymers exhibited excellent solubility in polar solvents. Crystallinity of the resulted polymers was evaluated by wide-angle X-ray diffraction (WXRD) method, and they exhibited semi-crystalline patterns. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) were in the range of 88-112 °C. The temperatures for 10% weight loss (T10) from their thermogravimetric analysis (TGA) curves were found to be in the range of 297-312 °C in air. Also the prepared polyureas showed liquid crystalline character.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


2000 ◽  
Vol 15 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Jan Schroers ◽  
Konrad Samwer ◽  
Frigyes Szuecs ◽  
William L. Johnson

The reaction of the bulk glass forming alloy Zr41Ti14Cu12Ni10Be23 (Vit 1) with W, Ta, Mo, AlN, Al2O3, Si, graphite, and amorphous carbon was investigated. Vit 1 samples were melted and subsequently solidified after different processing times on discs of the different materials. Sessile drop examinations of the macroscopic wetting of Vit 1 on the discs as a function of temperature were carried out in situ with a digital optical camera. The reactions at the interfaces between the Vit 1 sample and the different disc materials were investigated with an electron microprobe. The structure and thermal stability of the processed Vit 1 samples were examined by x-ray diffraction and differential scanning calorimetry. The results are discussed in terms of possible applications for composite materials.


2011 ◽  
Vol 172-174 ◽  
pp. 190-195 ◽  
Author(s):  
Giorgia T. Aleixo ◽  
Eder S.N. Lopes ◽  
Rodrigo Contieri ◽  
Alessandra Cremasco ◽  
Conrado Ramos Moreira Afonso ◽  
...  

Ti-based alloys present unique properties and hence, are employed in several industrial segments. Among Ti alloys, β type alloys form one of the most versatile classes of materials in relation to processing, microstructure and mechanical properties. It is well known that heat treatment of Ti alloys plays an important role in determining their microstructure and mechanical behavior. The aim of this work is to analyze microstructure and phases formed during cooling of β Ti-Nb-Sn alloy through different cooling rates. Initially, samples of Ti-Nb-Sn system were prepared through arc melting furnace. After, they were subjected to continuous cooling experiments to evaluate conditions for obtaining metastable phases. Microstructure analysis, differential scanning calorimetry and X-ray diffraction were performed in order to evaluate phase transformations. Depending on the cooling rate and composition, α” martensite, ω phase and β phase were obtained. Elastic modulus has been found to decrease as the amount of Sn was increased.


2018 ◽  
Vol 89 (9) ◽  
pp. 1770-1781 ◽  
Author(s):  
Huaizhong Xu ◽  
Benedict Bauer ◽  
Masaki Yamamoto ◽  
Hideki Yamane

A facile route was proposed to fabricate core–sheath microfibers, and the relationships among processing parameters, crystalline structures and the mechanical properties were investigated. The compression molded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH)/poly(L-lactic acid) (PLLA) strip enhanced the spinnability of PHBH and the mechanical properties of PLLA as well. The core–sheath ratio of the fibers was determined by the prefab strip, while the PLLA sheath component did not completely cover the PHBH core component due to the weak interfacial tension between the melts of PHBH and PLLA. A rotational target was applied to collect aligned fibers, which were further drawn in a water bath. The tensile strength and the modulus of as-spun and drawn fibers increased with increasing the take-up velocities. When the take-up velocity was above 500 m/min, the jet became unstable and started to break up at the tip of the Taylor cone, decreasing the mechanical properties of the fibers. The drawing process facilitated the crystallization of PLLA and PHBH, and the tensile strength and the modulus increased linearly with the increasing the draw ratio. The crystal information displayed from wide-angle X-ray diffraction patterns and differential scanning calorimetry heating curves supported the results of the tensile tests.


2016 ◽  
Vol 71 (5) ◽  
pp. 611-619 ◽  
Author(s):  
Yurii Prots ◽  
Felix Lange ◽  
Christina Drathen ◽  
Marcus Schmidt ◽  
Yuri Grin

AbstractCombining laboratory X-ray powder diffraction with in-situ high-temperature synchrotron experiments and differential scanning calorimetry, it has been shown that Ba21Al40, Ba3Al5, Ba7Al10 and Ba4Al5 decompose peritectically at 914, 826, 756, and 732°C, respectively. In addition, a new binary compound with the composition Ba4Al7+x (x = 0.17) and the formation temperature of 841°C was found. The initial structural model (space group P63/mmc, a = 6.0807(1), c = 39.2828(8) Å) with four Ba and five Al crystallographic positions was developed. It is based on the intergrowth concept involving the neighboring Ba21Al40 and Ba3Al5 phases and the derived atomic arrangement is subsequently refined using X-ray diffraction data. The crystal structures of all phases in the Ba–Al system, except BaAl4, exhibit Kagomé nets of aluminum atoms resembling those observed for the B atoms in the Laves phases AB2. In the crystal structure of Ba4Al7+x, single Kagomé layers alternate with double slabs (MgZn2 motif) along [001] and are separated by Ba cations. Intergrowth features of Ba4Al7+x are discussed together with the neighboring Ba–Al compounds and Sr5Al9.


2010 ◽  
Vol 113-116 ◽  
pp. 1712-1715
Author(s):  
Cheng Yu Wang ◽  
Chang Yu Liu ◽  
Jian Li

The preparation of hydrophobic CaCO3-wood composite through a double-diffusive method using dodecanoic acid as organic substrate is demonstrated. The product was characterized by the contact angle analysis, X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The mechanical properties of the product were measured. The results show that the synthesized CaCO3 fills in the wood cell and covers the surface of wood. The CaCO3-wood composite is hydrophobic. The mechanical properties of wood composite have significantly increased.


CrystEngComm ◽  
2018 ◽  
Vol 20 (22) ◽  
pp. 3105-3116 ◽  
Author(s):  
Roman Svoboda ◽  
Roman Bulánek ◽  
Dušan Galusek ◽  
Roghayeh Hadidimasouleh ◽  
Yadolah Ganjkhanlou

Differential scanning calorimetry and in situ X-ray diffraction analysis were used to study the products and mechanism of crystal formation in VOx–ZrO2 ceramics.


Sign in / Sign up

Export Citation Format

Share Document