scholarly journals A novel chemical-consolidation sand control composition: Foam amino resin system

e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Xiaosen Shang ◽  
Yingrui Bai ◽  
Zengbao Wang ◽  
Quan Wang ◽  
Changyin Dong

AbstractA novel chemical-consolidation method based foam amino resin system of sand control systems in the oilfield is reported. This sand control technique is more superior to the conventional method owing to its advantages such as the outstanding resistance and lower density as well as simple process preparation. The apparent density of the foam resin system ranges from 0.528 g/cm3 to 0.634 g/cm3 at room temperature. Moreover, the system has excellent foaming properties and excellent compatibility with the formation fluids. In addition, the foam amino resin sand consolidation system was optimized and investigated. Simultaneously, the sand-fixing performance of the foam resin system was comprehensively assessed. The optimized conditions are as follows: curing temperature, 60°C; curing time, 12 h; consolidated core compressive strength, 6.28 MPa. Furthermore, the consolidated core showed remarkable resistance to the formation fluids. In summary, the foam resin system effectively met the requirements of the sand control and the horizontal wells in the oilfield.

Author(s):  
Ayrton Cavallini Zotelle ◽  
Lucas Bobbio ◽  
Joao Henrique Sartori ◽  
Renato Siqueira ◽  
André Campanharo Gabriel ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
pp. 32
Author(s):  
Noorina Hidayu Jamil ◽  
Mohd. Mustafa Al Bakri Abdullah ◽  
Faizul Che Pa ◽  
Mohamad Hasmaliza ◽  
Wan Mohd Arif W. Ibrahim ◽  
...  

The main objective of this research was to investigate the influence of curing temperature on the phase transformation, mechanical properties, and microstructure of the as-cured and sintered kaolin-ground granulated blast furnace slag (GGBS) geopolymer. The curing temperature was varied, giving four different conditions; namely: Room temperature, 40, 60, and 80 °C. The kaolin-GGBS geopolymer was prepared, with a mixture of NaOH (8 M) and sodium silicate. The samples were cured for 14 days and sintered afterwards using the same sintering profile for all of the samples. The sintered kaolin-GGBS geopolymer that underwent the curing process at the temperature of 60 °C featured the highest strength value: 8.90 MPa, and a densified microstructure, compared with the other samples. The contribution of the Na2O in the geopolymerization process was as a self-fluxing agent for the production of the geopolymer ceramic at low temperatures.


2021 ◽  
Vol 92 (7) ◽  
pp. 075108
Author(s):  
Yilun Xu ◽  
Gang Huang ◽  
David I. Santiago ◽  
Irfan Siddiqi

2021 ◽  
Vol 98 ◽  
pp. 14-18
Author(s):  
Thao Nguyen Thi ◽  
◽  
Nam Pham Ky ◽  
Ngoc Tran Vu Diem

Brass melting slag (20.38 wt.% Zn) was leached in sulfuric acid with concentration of (50 + 80) g/l H2SO4, leaching temperature of (30 + 60) °C for (30 + 120) min. The optimized conditions for 94.16% Zn extraction from brass melting slag were found as 70 g/l H2SO4, room temperature and 90 min. The leaching solution was purified by removal of Fe through Fe(OH)3 precipitation when adding ZnO to adjust pH value of 5. The solution was continuously cemented by Zn metal at 60 °C for 60 min to obtain Cu metal with high purity of 99 wt.% Cu. The purified solution with 37.64 g/l Zn was modified by Na2C03 to have pH value of about 6 and precipitation of ZnC03 (94.14 %).


2006 ◽  
Author(s):  
Fujian Zhou ◽  
Yiping Zong ◽  
Yuzhang Liu ◽  
Xianyou Yang ◽  
Chunming Xiong ◽  
...  

2014 ◽  
Vol 775-776 ◽  
pp. 210-215
Author(s):  
Danúbia Lisbôa da Costa ◽  
Romualdo Rodrigues Menezes ◽  
Gelmires Araújo Neves ◽  
Sandro Marden Torres

Geopolymers, also known as inorganic polymers, are aluminosilicates with cementing characteristics that have great application potential. They are produced by the alkaline activation of aluminosilicates precursors such as industrial wastes, calcined clays, natural minerals, among others and have their properties intimately associated to characteristics of the precursor materials and curing conditions. In this sense, this study aims to evaluate the mechanical behavior of geopolymers obtained from metakaolin according to the curing temperature. The geopolymerization was reached by the mixture of metakaolin with NaOH and the curing of the specimens was held at room temperature, 60°C and 100°C. The specimens were characterized by X-ray diffraction, mercury intrusion porosimetry, and SEM. The mechanical strength was determined by flexural test. The results show that the process of geopolymerization suffers a direct influence of the curing temperature used.


2005 ◽  
Author(s):  
H. Sadrpanah ◽  
R. Allam ◽  
A. Acock ◽  
M. Norris ◽  
T. O’Rourke ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 172
Author(s):  
Mamert Mbonimpa ◽  
Parrein Kwizera ◽  
Tikou Belem

When cemented paste backfill (CPB) is used to fill underground stopes opened in permafrost, depending on the distance from the permafrost wall, the curing temperature within the CPB matrix decreases progressively over time until equilibrium with the permafrost is reached (after several years). In this study, the influence of declining curing temperature (above freezing temperature) on the evolution of the unconfined compressive strength (UCS) of CPB over 28 days’ curing is investigated. CPB mixtures were prepared with a high early (HE) cement and a blend of 80% slag and 20% General Use cement (S-GU) at 5% and 3% contents and cured at room temperature in a humidity chamber and under decreasing temperatures in a temperature-controlled chamber. Results indicate that UCS is higher for CPB cured at room temperature than under declining temperatures. UCS increases progressively from the stope wall toward the inside of the CPB mass. Under declines in curing temperature, HE cement provides better short-term compressive strength than does S-GU binder. In addition, the gradual decline in temperature does not appear to affect the fact that the higher the binder proportion, the greater the strength development. Therefore, UCS is higher for samples prepared with 5% than 3% HE cement. Findings are discussed in terms of practical applications.


2015 ◽  
Author(s):  
Ahmed. F. El Gogary ◽  
Hossam. H. El-Masry ◽  
Mostafa. M. Kortam ◽  
Hany. R. El-Rayek

1983 ◽  
Vol 23 (02) ◽  
pp. 238-248 ◽  
Author(s):  
Roger F. Rensvold

Abstract Four commercial in-situ sand-consolidation resin systems and one resin-sandpack system were tested for durability in hot [160°F (71.1°C)] flowing brine for up to 28 months, and in as much as 30 million PV brine. Brine was selected as the test fluid since it is considered to be more damaging than oil to the stability of resin-consolidated sand. Two epoxy and two furan systems were investigated. Other commercial consolidation techniques - e.g., involving phenol formaldehyde and phenolic furan resins described in the literature1 - have been recognized as effective sand-stabilization products; however, some limitations had to be placed on the scope of the study because of equipment and time limitations. Perhaps these techniques will be the subject of future investigations. Note that all processes evaluated in this investigation used silane coupling agents contained in the resinous materials. These agents increase the stability of sands consolidated by organic polymers.2 The overflush-catalyzed furan resin (System A) and the internally catalyzed epoxy resin (System D) demonstrated greater stability under the specific test conditions employed. System A retained higher strength during the first 15 million PV. Thereafter, System D appeared to be better. System A exhibited the highest initial permeability, and, after 5 million PV, Systems A, B, and D were about equal in permeability. From that point, the permeability of System A slowly increased, while decreasing for Systems B and D. The epoxy-resin sandpack (40- to 60-mesh sand) showed little change in compressive strength after exposure to more than 30 million PV of hot, flowing brine. Introduction The current energy situation emphasizes the importance of utilizing the most efficient completion and production techniques to maximize production. Higher rates of production often can create conditions that, if not anticipated, can lead to unnecessary workover expense. Oil production from unconsolidated sands continues to demand effective and long-lasting sand-control procedures. Gravel packing, while often the most economical sand-control process, presents problems in multiple-zone completions, where it is necessary to stop sand production from intermediate and upper producing zones without interfering with the production from lower intervals. In-situ consolidation of incompetent producing sands with resin allows production from upper intervals without sand-control equipment in the borehole that would hinder production from lower zones. Such procedures are recommended for intervals that have not already produced appreciable quantities of formation sand. In cases where formation sand has been produced, it is desirable to pack the zone with a closely graded, resin-coated sand. The resultant consolidated pack provides a strong, highly permeable medium between the incompetent formation and the borehole. Two types of resin being used in the industry for in-situ consolidation and resin-bonded sandpacks are furans and epoxies. It is important that any procedure involving the use of these resins results in effective, durable protection against the production of formation sand.


Sign in / Sign up

Export Citation Format

Share Document