scholarly journals Mine Backfilling in the Permafrost, Part II: Effect of Declining Curing Temperature on the Short-Term Unconfined Compressive Strength of Cemented Paste Backfills

Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 172
Author(s):  
Mamert Mbonimpa ◽  
Parrein Kwizera ◽  
Tikou Belem

When cemented paste backfill (CPB) is used to fill underground stopes opened in permafrost, depending on the distance from the permafrost wall, the curing temperature within the CPB matrix decreases progressively over time until equilibrium with the permafrost is reached (after several years). In this study, the influence of declining curing temperature (above freezing temperature) on the evolution of the unconfined compressive strength (UCS) of CPB over 28 days’ curing is investigated. CPB mixtures were prepared with a high early (HE) cement and a blend of 80% slag and 20% General Use cement (S-GU) at 5% and 3% contents and cured at room temperature in a humidity chamber and under decreasing temperatures in a temperature-controlled chamber. Results indicate that UCS is higher for CPB cured at room temperature than under declining temperatures. UCS increases progressively from the stope wall toward the inside of the CPB mass. Under declines in curing temperature, HE cement provides better short-term compressive strength than does S-GU binder. In addition, the gradual decline in temperature does not appear to affect the fact that the higher the binder proportion, the greater the strength development. Therefore, UCS is higher for samples prepared with 5% than 3% HE cement. Findings are discussed in terms of practical applications.

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5204
Author(s):  
Adeshina Adewale Adewumi ◽  
Mohd Azreen Mohd Ariffin ◽  
Mohammed Maslehuddin ◽  
Moruf Olalekan Yusuf ◽  
Mohammad Ismail ◽  
...  

This present study evaluates the effect of silica modulus (Ms) and curing temperature on strengths and the microstructures of binary blended alkali-activated volcanic ash and limestone powder mortar. Mortar samples were prepared using mass ratio of combined Na2SiO3(aq)/10 M NaOH(aq) of 0.5 to 1.5 at an interval of 0.25, corresponding to Ms of 0.52, 0.72, 0.89, 1.05 and 1.18, respectively, and sole 10 M NaOH(aq). Samples were then subjected to ambient room temperature, and the oven-cured temperature was maintained from 45 to 90 °C at an interval of 15 °C for 24 h. The maximum achievable 28-day strength was 27 MPa at Ms value of 0.89 cured at 75 °C. Samples synthesised with the sole 10 M NaOH(aq) activator resulted in a binder with a low 28-day compressive strength (15 MPa) compared to combined usage of Na2SiO3(aq)/10 M NaOH(aq) activators. Results further revealed that curing at low temperatures (25 °C to 45 °C) does not favour strength development, whereas higher curing temperature positively enhanced strength development. More than 70% of the 28-day compressive strength could be achieved within 12 h of curing with the usage of combined Na2SiO3(aq)/10 M NaOH(aq). XRD, FTIR and SEM + EDX characterisations revealed that activation with combined Na2SiO3(aq)/10 M NaOH(aq) leads to the formation of anorthite (CaAl2Si2O8), gehlenite (CaO.Al2O3.SiO2) and albite (NaAlSi3O8) that improve the amorphosity, homogeneity and microstructural density of the binder compared to that of samples synthesised with sole 10 M NaOH(aq).


2006 ◽  
Vol 43 (3) ◽  
pp. 310-324 ◽  
Author(s):  
Katherine Klein ◽  
Dragana Simon

This paper focuses on monitoring setting and strength development in cemented paste backfill (CPB). The composition of the paste is altered to study the effects of binder type and content, selected chemical admixtures (superplasticizers), mineral additives (e.g., fly ash), and pore fluid chemistry (e.g., ionic concentration and pH) on these properties. The three main techniques utilized are shear wave velocity measurements, penetration tests (e.g., Vicat needle tests), and unconfined compressive strength tests. All of these tests are sensitive to changes in the paste composition. The effect of the pore fluid chemistry and the chemical additives on the CPB properties depends on the ion type and concentration and the chemical composition of the superplasticizers. The shear wave velocity in both uncemented and cemented pastes increases with time as a result of self-weight consolidation, capillary forces, and cementation (the precipitation of ions in uncemented tailings pastes or cement hydration in cemented tailings pastes).Key words: cemented paste backfill, shear wave velocity, setting, unconfined compressive strength.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yongli Xu ◽  
Guang Yang ◽  
Hongyuan Zhao

For cement-based materials, the curing temperature determines the strength gain rate and the value of compressive strength. In this paper, the 5% cement-stabilized macadam mixture is used. Three indoor controlled temperature curing and one outdoor natural curing scenarios are designed and implemented to study the strength development scenario law of compressive strength, and they are standard temperature curing (20°C), constant low temperature curing (10°C), day interaction temperature curing (varying from 6°C to 16°C), and one outdoor natural temperature curing (in which the air temperature ranges from 4°C to 20°C). Finally, based on the maturity method, the maturity-strength estimation model is obtained by using and analyzing the data collected from the indoor tests. The model is proved with high accuracy based on the validated results obtained from the data of outdoor tests. This research provides technical support for the construction of cement-stabilized macadam in regions with low temperature, which is beneficial in the construction process and quality control.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Bin Han ◽  
Shengyou Zhang ◽  
Wei Sun

This study investigated the influencing rules of curing temperature (5, 10, 16, and 20°C), cement ratio (8%, 10%, 12%, and 14%), and mass concentration (70%, 73%, 74%, and 75%) on the strength of backfill. In addition, a scanning electron microscope (SEM) is employed to analyze the microtopography of the backfill. Experimental results indicate that the uniaxial compressive strength (UCS) of the backfill decreases as the curing temperature diminishes; temperature substantially influences the earlier strength of backfill (it is much significant below 10°C). In addition, as the cement ratio rises, the critical point for the impact of temperature on strength gradually moves toward a low-temperature zone; in pace with the slurry mass concentration increase, the compressive strength of the backfill also rises and its rate of increase enlarges after going beyond the critical concentration. In case the curing temperature is lower than 10°C, the extent of hydration is also low inside the backfill. Through experiments, the critical concentration of slurry in the Jinying gold mine is determined as 73%, and the critical interval of the cement ratio ranged between 10% and 12%. Corresponding measures can be taken to increase the strength of backfill in the Jinying Gold Mine by 129.9%. As a result, backfill collapse is effectively controlled.


2012 ◽  
Vol 626 ◽  
pp. 931-936 ◽  
Author(s):  
Liew Yun Ming ◽  
Kamarudin Hussin ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Mohammed Binhussain ◽  
Luqman Musa ◽  
...  

The properties of metakaolin geopolymer paste are affected by the alkali concentration, the initial raw materials, solidification process, and amount of mixing water as well as the curing conditions. This study aimed to investigate the effect of curing temperature (room temperature, 40°C, 60°C, 80°C and 100°C) and curing time (6h, 12h, 24h, 48h and 72h) on the geopolymer pastes produced from geopolymer powder. The results showed that curing at room temperature was unfeasible. Heat was required for the geopolymerization process, where strength increased as the curing temperature was increased. Moderate elevated curing temperature favored the strength development of geopolymer pastes in comparison with those treated with extreme elevated curing temperature. When geopolymer paste was subjected to extreme elevated curing temperature, shorter curing time should be used to avoid deterioration in strength gain. Similarly, longer curing time was recommended for moderate elevated curing temperature. The microstructure of geopolymer paste cured at moderate curing temperature showed obvious densification of structure. In contrast, the structure formed was weak and less compact at very high elevated curing temperature.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Keun-Hyeok Yang ◽  
Jae-Sung Mun ◽  
Myung-Sug Cho

This study examined the relative strength-maturity relationship of high-strength concrete (HSC) specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1) isothermal curing conditions of 5°C, 20°C, and 40°C and (2) terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.


2018 ◽  
Vol 18 (1) ◽  
pp. 32-38
Author(s):  
S. N. Eshun ◽  
Solomon Senyo Robert Gidigasu ◽  
S. K. Y. Gawu

The study sought to investigate the potential application of clay pozzolana as a supplement for cement in hydraulic backfill, using classified tailings from AngloGold Ashanti, Obuasi Mine. The percentage of the Portland cement that could be substituted with the clay pozzolana to produce backfill with best strength was determined. 10%, 25%, 30%, 35% and 40% of the ordinary Portland cement were replaced with clay pozzolana and then mixed with tailings and water. The slurry produced was cast into cylindrical specimen of 50mm diameter by 120mm high and tested for compressive strength after curing for 7, 14, 21, 28 and 56 days. The results indicate that, clay pozzolana-cement composite has potential for application in hydraulic back fill production without increased risk to safety and dilution. It was noted that hydraulic backfill with 10%, 25%, 30% and 35% of the ordinary portland cement replaced with clay pozzolana had strengths greater than those obtained for ordinary portland cement alone. Ten percent (10%) pozzolana content gave the maximum strength followed by 25% pozzolana. It is recommended that for safety and economic considerations, the cement content should be replaced by 25% pozzolana in the production of backfills. Keywords: Hydraulic Backfill, Portland Cement, Clay Pozzolana, Unconfined Compressive Strength


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5677
Author(s):  
Yi Shi ◽  
Tao Wang ◽  
Haiyan Li ◽  
Shaoliang Wu

This work intends to contribute to the understanding of the influence factors of early hydration of ultrafine cement by focusing on the different fineness, different kinds of hardening accelerators, and different curing temperatures. Isothermal calorimetry, thermogravimetry, and X-ray diffraction (XRD) were performed to compare the hydration and chemical evolution of pastes containing accelerators with different fineness and curing temperatures; meanwhile, mechanical properties and water absorption were tested. The results showed that the cement fineness had a significant effect on the early hydration process; the smaller the cement particle size, the higher the early compressive strength. The 24 h compressive strength of ultrafine cement with a particle diameter of 6.8μm could reach 55.94 MPa, which was 118% higher than the reference cement. Water absorption test results indicated that adding 1% Ca(HCOO)2 to ultrafine cement can effectively reduce the water absorption, and it was only 1.93% at 28 d, which was 46% lower than the reference cement. An increase in curing temperature accelerated the activation of ultrafine cement in terms of the strength development rate, and the content of Ca(OH)2 in the ultrafine cement paste could reach 13.09% after being mixed with water for 24 h, which was 22% higher than that of the reference cement.


Sign in / Sign up

Export Citation Format

Share Document