Evidence for bicomponent fibers: A review

e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 636-653
Author(s):  
Shufang Zhu ◽  
Xin Meng ◽  
Xu Yan ◽  
Shaojuan Chen

Abstract Recently, bicomponent fibers have been attracting much attention due to their unique structural characteristics and properties. A common concern was how to characterize a bicomponent fiber. In this review, we generally summarized the classification, structural characteristics, preparation methods of the bicomponent fibers, and focused on the experimental evidence for the identification of bicomponent fibers. Finally, the main challenges and future perspectives of bicomponent fibers and their characterization are provided. We hope that this review will provide readers with a comprehensive understanding of the design and characterization of bicomponent fibers.

2015 ◽  
Vol 1806 ◽  
pp. 1-6
Author(s):  
Sergey Mamedov

ABSTRACTTiO2 nanopowders obtained using different methods with the mean size of 5, 15, and 30 nm have been investigated by Raman spectroscopy in wide spectral range. Nano-size of TiO2 crystals lead to a shift and broadening of the first-order Raman lines through a relaxation of the q = 0 selection rule and effects on to the position, width and asymmetry of a Raman bands. The details of the evolution of the 142.9 cm-1 Raman line shape on the size and distributions of the nanopowders are presented and discussed in frame of confined phonons model. Analysis of Raman spectra shows that structural characteristics of nanopowders may be different even size of the nanopowders is the same. Structural features of the material depend on preparation methods/conditions and can be extracted from Raman spectra of the material.


2019 ◽  
Vol 5 (3) ◽  
Author(s):  
Jingfang Zhang ◽  
Yifu Yu ◽  
Bin Zhang

Abstract Bimetallic and multimetallic alloy nanoparticles are emerging as a class of critical nanomaterials in electronic, optical and magnetic fields due to their unique physic-chemical properties. In particular, precise control of the nanoparticle size can endow them with broad versatility and high selectivity. This chapter reviews some tremendous achievements in the development of size controlled bimetallic and multimetallic alloy nanoparticles, with special emphasis on general preparation methods, characterization methodologies and instrumentation techniques. Some key factors and future perspectives on the development of size-controlled bimetallic and multimetallic alloy nanoparticles are also discussed.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 136
Author(s):  
Bimalendu Ray ◽  
Martin Schütz ◽  
Shuvam Mukherjee ◽  
Subrata Jana ◽  
Sayani Ray ◽  
...  

Naturally occurring polysaccharide sulfates are highly diverse, owning variations in the backbone structure, linkage pattern and stereochemistry, branching diversity, sulfate content and positions of sulfate group(s). These structural characteristics bring about diverse sulfated polymers with dissimilar negative charge densities and structure–activity relationships. Herein, we start with a short discussion of techniques needed for extraction, purification, chemical sulfation, and structural characterization of polysaccharides. Processes of isolation and sulfation of plant-derived polysaccharides are challenging and usually involve two steps. In this context, we describe an integrated extraction-sulfation procedure that produces polysaccharide sulfates from natural products in one step, thereby generating additional pharmacological activities. Finally, we provide examples of the spectrum of natural source-derived polysaccharides possessing specific features of bioactivity, in particular focusing on current aspects of antiviral drug development and drug–target interaction. Thus, the review presents a detailed view on chemically engineered polysaccharides, especially sulfated derivatives, and underlines their promising biomedical perspectives.


2021 ◽  
Vol 22 (11) ◽  
pp. 5781
Author(s):  
Janarthanan Supramaniam ◽  
Darren Yi Sern Low ◽  
See Kiat Wong ◽  
Loh Teng Hern Tan ◽  
Bey Fen Leo ◽  
...  

Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8–10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 586
Author(s):  
Liam Cole ◽  
Diogo Fernandes ◽  
Maryam T. Hussain ◽  
Michael Kaszuba ◽  
John Stenson ◽  
...  

Viruses are increasingly used as vectors for delivery of genetic material for gene therapy and vaccine applications. Recombinant adeno-associated viruses (rAAVs) are a class of viral vector that is being investigated intensively in the development of gene therapies. To develop efficient rAAV therapies produced through controlled and economical manufacturing processes, multiple challenges need to be addressed starting from viral capsid design through identification of optimal process and formulation conditions to comprehensive quality control. Addressing these challenges requires fit-for-purpose analytics for extensive characterization of rAAV samples including measurements of capsid or particle titer, percentage of full rAAV particles, particle size, aggregate formation, thermal stability, genome release, and capsid charge, all of which may impact critical quality attributes of the final product. Importantly, there is a need for rapid analytical solutions not relying on the use of dedicated reagents and costly reference standards. In this study, we evaluate the capabilities of dynamic light scattering, multiangle dynamic light scattering, and SEC–MALS for analyses of rAAV5 samples in a broad range of viral concentrations (titers) at different levels of genome loading, sample heterogeneity, and sample conditions. The study shows that DLS and MADLS® can be used to determine the size of full and empty rAAV5 (27 ± 0.3 and 33 ± 0.4 nm, respectively). A linear range for rAAV5 size and titer determination with MADLS was established to be 4.4 × 1011–8.7 × 1013 cp/mL for the nominally full rAAV5 samples and 3.4 × 1011–7 × 1013 cp/mL for the nominally empty rAAV5 samples with 3–8% and 10–37% CV for the full and empty rAAV5 samples, respectively. The structural stability and viral load release were also inferred from a combination of DLS, SEC–MALS, and DSC. The structural characteristics of the rAAV5 start to change from 40 °C onward, with increasing aggregation observed. With this study, we explored and demonstrated the applicability and value of orthogonal and complementary label-free technologies for enhanced serotype-independent characterization of key properties and stability profiles of rAAV5 samples.


2015 ◽  
Vol 39 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Luíz Paulo Figueredo Benício ◽  
Rejane Alvarenga Silva ◽  
Júnia Aparecida Lopes ◽  
Denise Eulálio ◽  
Rodrigo Morais Menezes dos Santos ◽  
...  

The current research aims to introduce Layered Double Hydroxides (LDH) as nanomaterials to be used in agriculture, with particular reference to its use as storage and slow release matrix of nutrients and agrochemicals for plant growing. Structural characteristics, main properties, synthesis methods and characterization of LDH were covered in this study. Moreover, some literature data have been reported to demonstrate their potential for storage and slow release of nitrate, phosphate, agrochemicals, besides as being used as adsorbent for the wastewater treatment. This research aims to expand, in near future, the investigation field on these materials, with application in agriculture, increasing the interface between chemistry and agronomy.


2007 ◽  
Vol 2 (1) ◽  
pp. 155892500700200 ◽  
Author(s):  
Nataliya Fedorova ◽  
Svetlana Verenich ◽  
Behnam Pourdeyhimi

Recent research on all aspects of thermally point bonded nonwovens has led to considerable improvements in the understanding of material requirements for these nonwovens, the changes that occur during bonding and the resultant deterioration of the mechanical properties of the nonwoven materials. This paper addresses how one may use a bicomponent fiber technology to overcome the shortcomings of the thermal bonding and obtain high strength spunbond fabrics. In particular, we present the utility of islands-in-the-sea (I/S) bicomponent fibers for optimizing the strength of thermally bonded fabrics. To examine the role of various bonding temperatures on the fabric performance, pre-consolidated webs were formed and subsequently, thermally bonded. Thus, any influence introduced by potential variations in the structure was minimized. Point-bonded bicomponent samples made up of nylon-6 (N6) as the islands and low density polyethylene (PE) as the sea showed great promise with respect to their mechanical properties, suggesting that the use of bicomponent fibers can be beneficial for strength optimization of thermally bonded spunbond nonwovens.


2008 ◽  
Vol 2 (2) ◽  
pp. 109-114 ◽  
Author(s):  
Ljubica Nikolic ◽  
Marija Maletin ◽  
Paula Ferreira ◽  
Paula Vilarinho

One-dimensional titania structures were synthesized trough a simple hydrothermal process in a highly alkaline conditions. The aim of this work was to elucidate the effect of time on the formation of 1D titanates as well on its structural characteristics (morphology, phase composition, surface area). Apart from that, the effect of heat treatment conditions on the stability of titanate based 1D samples has been investigated. The results have revealed that it is possible to form one-dimensional titanates already after 1 hour of hydrothermal synthesis. Although the composition of titanates is still under debate, the results probably correspond to the layered sodium titanates. The 1D prepared structures show a remarkable stability during heating, remaining the basic morphology and composition even up to 700?C.


Sign in / Sign up

Export Citation Format

Share Document