A Novel Compact UWB Bandpass Filter with Quad-Notched Bands Based on S-SCRLHs Resonator

Frequenz ◽  
2015 ◽  
Vol 69 (7-8) ◽  
Author(s):  
Changming Xie ◽  
Chunhua Wang

AbstractA novel compact ultra-wideband (UWB) bandpass filter (BPF) with a quad band-notched function using S-SCRLHs (splitted simplified composite right/left-handed) resonator is presented. The S-SCRLHs resonator, which exhibits quadruple resonance, is realized by coupling double S-SCRLH resonator. The S-SCRLHs resonator is integrated into a conventional UWB BPF. The notched frequencies can be adjusted according to specification by altering the S-SCRLHs resonator. Band-rejected filtering properties around the C-band satellite communication band, 5.2 GHz WLAN band and the X-band satellite communication band are generated. The notching frequencies are located at 4.2/5.2/6.3/7.8 GHz. Both simulated and measured results are provided with good agreement. Compared with other BPFs, the proposed BPF has the advantages of compact size, multi-stopband and good selectivity.

Author(s):  
Mohssine El Ouahabi ◽  
Aziz Dkiouak ◽  
Alia Zakriti ◽  
Mohamed Essaaidi ◽  
Hanae Elftouh

<span lang="EN-US">A compact design of ultra-wideband (UWB) antenna with dual band-notched characteristics based on split-ring resonators (SRR) are investigated in this paper. The wider impedance bandwidth (from 2.73 to 11.34 GHz) is obtained by using two symmetrical slits in the radiating patch and another slit in the partial ground plane. The dual band-notch rejection at WLAN and X-band downlink satellite communication system are obtained by inserting a modified U-strip on the radiating patch at 5.5 GHz and embedding a pair of rectangular SRRs on both sides of the microstrip feed line at 7.5 GHz, respectively. The proposed antenna is simulated and tested using CST MWS high frequency simulator and exhibits the advantages of compact size, simple design and each notched frequency band can be controlled independently by using the SRR geometrical parameters. Therefore, the parametric study is carried out to understand the mutual coupling between the dual band-notched elements. To validate simulation results of our design, a prototype is fabricated and good agreement is achieved between measurement and simulation. Furthermore, a radiation patterns, satisfactory gain, current distribution and VSWR result at the notched frequencies make the proposed antenna a suitable candidate for practical UWB applications.</span>


2017 ◽  
Vol 6 (2) ◽  
pp. 53 ◽  
Author(s):  
E. K. I. Hamad ◽  
N. Mahmoud

Compact microstrip-fed printed monopole antenna with triple band-notched characteristics is suggested for ultra-wideband (UWB) applications. The antenna is constructed of a conventional rectangular microstrip patch antenna with partial ground plane and T-shaped strip employed in the ground plane as well as an inverted Ω- and L-shaped slots incorporated within the radiated element. The notched functions are created by the inverted Ω- and L-shaped slots, which are realized for WiMAX (from 2.69 to 4.5 GHz) and WLAN (from 5.49 to 6.37 GHz). The T-shaped parasitic strip generates the third notch for the X-band uplink satellite communication (from 8.15 to 9.61 GHz). The measured operating -10 dB bandwidth of the proposed antenna extends from 2.39 to more than 18 GHz except at the notched bands. The prototype antenna has a total area of 20×20×1.6 mm3. Electromagnetic (EM) simulations are carried out using 3D full-wave FEM-based simulator. EM simulation results are in good agreement with measurement results. The radiation pattern of the proposed antenna is nearly Omni-directional over the whole targeted band.


Author(s):  
Lei Li ◽  
Jingchang Nan ◽  
Jing Liu ◽  
Chengjian Tao

Abstract A compact ultrawideband (UWB) antenna with reconfigurable triple band notch characteristics is proposed in this paper. The antenna consists of a coplanar waveguide-fed top-cut circular-shaped radiator with two etched C-shaped slots, a pair of split-ring resonators (SRRs) on the backside and four p-type intrinsic n-type (PIN) diodes integrated in the slots and SRRs. By controlling the current distribution in the slots and SRRs, the antenna can realize eight band notch states with independent switch ability, which allows UWB to coexist with 5G (3.3–4.4 GHz)/WiMAX (3.3–3.6 GHz), WLAN (5.15–5.825 GHz), and X-band (7.9–8.4 GHz) bands without interference. By utilizing a nested structure of C-shaped slots and SRRs on the backside, a compact size of 18 × 19.5 mm2 is achieved along with multimode triple band notch reconfigurability. The antenna covers a bandwidth of 3.1–10.6 GHz. A prototype is fabricated and tested. The simulated and experimental results are in good agreement.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Karthie S. ◽  
Zuvairiya Parveen J. ◽  
Yogeshwari D. ◽  
Venkadeshwari E.

Purpose The purpose of this paper is to present the design of a compact microstrip bandpass filter (BPF) in dual-mode configuration loaded with cross-loop and square ring slots on a square patch resonator for C-band applications. Design/methodology/approach In the proposed design, the dual-mode response for the filter is realized with two transmission zeros (TZs) by the insertion of a perturbation element at the diagonal corner of the square patch resonator with orthogonal feed lines. Such TZs at the edges of the passband result in better selectivity for the proposed BPF. Moreover, the cross-loop and square ring slots are etched on a square patch resonator to obtain a miniaturized BPF. Findings The proposed dual-mode microstrip filter fabricated in RT/duroid 6010 substrate using PCB technology has a measured minimum insertion loss of 1.8 dB and return loss better than 24.5 dB with a fractional bandwidth (FBW) of 6.9%. A compact size of 7.35 × 7.35 mm2 is achieved for the slotted patch resonator-based dual-mode BPF at the center frequency of 4.76 GHz. As compared with the conventional square patch resonator, a size reduction of 61% is achieved with the proposed slotted design. The feasibility of the filter design is confirmed by the good agreement between the measured and simulated responses. The performance of the proposed filter structure is compared with other dual-mode filter works. Originality/value In the proposed work, a compact dual-mode BPF is reported with slotted structures. The conventional square patch resonator is deployed with cross-loop and square ring slots to design a dual-mode filter with a square perturbation element at its diagonal corner. The proposed filter exhibits compact size and favorable performance compared to other dual-mode filter works reported in literature. The aforementioned design of the dual-mode BPF at 4.76 GHz is suitable for applications in the lower part of the C-band.


2018 ◽  
Vol 10 (4) ◽  
pp. 487-496 ◽  
Author(s):  
Hany A. Atallah ◽  
Adel B. Abdel-Rahman ◽  
Kuniaki Yoshitomi ◽  
Ramesh K. Pokharel

AbstractIn this paper, a new miniaturized frequency agile filter-antenna with a wide reconfigurable frequency band is proposed for interweave cognitive radios (CRs). A tunable bandpass filter (BPF) composed of a symmetrical ring resonator is cascaded to the feed line of an ultra-wideband planar antenna. The structure of the proposed ring resonator BPF is simple and compact so that the total size of the proposed filter-antenna is smaller than that of a conventional system made of a separate antenna and BPF. The reconfigurability of the proposed filter-antenna is achieved by changing the operating frequency of the BPF by loading the ring resonator with a single varactor diode at its center. The fabricated prototype has successfully achieved a wide operational bandwidth of 1.43 GHz which covers continuous narrow bands from 4.65 to 6.08 GHz. Moreover, the operating tunable narrow bands have stable radiation characteristics. Good agreement between measurement and simulation results is demonstrated.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 201-209
Author(s):  
Mohammad Ahmad Salamin ◽  
Sudipta Das ◽  
Asmaa Zugari

AbstractIn this paper, a novel compact UWB antenna with variable notched band characteristics for UWB applications is presented. The designed antenna primarily consists of an adjusted elliptical shaped metallic patch and a partial ground plane. The proposed antenna has a compact size of only 17 × 17 mm2. The suggested antenna covers the frequency range from 3.1 GHz to 12 GHz. A single notched band has been achieved at 7.4 GHz with the aid of integrating a novel closed loop resonator at the back plane of the antenna. This notched band can be utilized to alleviate the interference impact with the downlink X-band applications. Besides, a square slot was cut in the loop in order to obtain a variable notched band. With the absence and the existence of this slot, the notched band can be varied to mitigate interference of the upper WLAN band (5.72–5.82 GHz) and X-band (7.25–7.75 GHz) with UWB applications. A good agreement between measurement and simulation results was achieved, which affirms the appropriateness of this antenna for UWB applications.


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 440 ◽  
Author(s):  
Huang ◽  
Yuan

A novel method to design a wideband substrate integrated waveguide (SIW) bandpass filter (BPF) with compact size, wide stopband and high selectivity is presented. In this method some unique electromagnetic band-gap (EBG) cells are periodically etched on the top layer of SIW to realize a wide passband propagating below the equivalent waveguide cutoff frequency. By changing the configuration of EBG cells, undesired harmonics in upper stopband can be suppressed and a wideband BPF with wide stopband can be obtained. By symmetrically loading two complementary split ring resonators (CSRRs) on the tapered gradient lines of the input/output ports, a transmission zero near the passband can be introduced, and it makes the frequency selectivity of upper sideband improve significantly. As a verification, a wideband SIW BPF with a 3.02 GHz absolute bandwidth (ABW) and a 64.7% fractional bandwidth (FBW) centered at 4.67 GHz is designed, simulated, manufactured, and measured. The results of the experiment and simulation are in good agreement.


Circuit World ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sandhya Ramalingam ◽  
Umma Habiba Hyder Ali ◽  
Sharmeela Chenniappan

Purpose This paper aims to design a dual mode X-band substrate integrated waveguide (SIW) bandpass filter in the conventional SIW structure. A pair of back-to-back square and split ring resonator is introduced in the single-layer SIW bandpass filter. The various coupling configurations of SIW bandpass filter using split square ring slot resonator is designed to obtain dual resonant mode in the passband. It is shown that the measured results agree with the simulated results to meet compact size, lower the transmission coefficient, better reflection coefficient, sharp sideband rejection and minimal group delay. Design/methodology/approach A spurious suppression of wideband response is suppressed using an open stub in the transmission line. The width and length of the stub are tuned to suppress the wideband spurs in the stopband. The measured 3 dB bandwidth is from 8.76 to 14.24 GHz with a fractional bandwidth of 48.04% at a center frequency of 11.63 GHz, 12.59 GHz. The structure is analyzed using the equivalent circuit model, and the simulated analysis is based on an advanced design system software. Findings This paper discusses the characteristics of resonator below the waveguide cut-off frequency with their working principles and applications. Considering the difficulties in combining the resonators with a metallic waveguide, a new guided wave structure – the SIW is designed, which is synthesized on a planar substrate with linear periodic arrays of metallized via based on the printed circuit board. Originality/value This study has investigated the wave propagation problem of the SIW loaded by square ring slot-loaded resonator. The electric dipole nature of the resonator has been used to achieve a forward passband in a waveguide environment. The proposed filters have numerous advantages such as high-quality factor, low insertion loss, easy to integrate with the other planar circuits and, most importantly, compact size.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 300 ◽  
Author(s):  
Musab Hameed ◽  
Gaobiao Xiao ◽  
Ali Najam ◽  
Lina Qiu ◽  
Tayyab Hameed

This paper proposes a method for designing a quadruple-mode wideband bandpass filter using off-centered perturbed metallic cylinders in a rectangular waveguide cavity with compact size and improved out-of-band rejection. Two off-centered perturbation cylinders were placed at the bottom of the rectangular waveguide cavity along with a pair of perpendicularly-fed coaxial lines, which excited four quasi-transverse magnetic (TM) modes to realize the desired passband. The height of the waveguide cavity and the shape of the perturbation cylinders were exploited to achieve an all quasi-TM modes filter with good out-of-band rejection and sharp skirt selectivity. The proposed filter operates at 2.93 GHz center frequency with 38% wide fractional bandwidth (FBW). The proposed filter is fabricated using aluminum. The measured and simulated results are in good agreement with each other.


Frequenz ◽  
2013 ◽  
Vol 67 (1-2) ◽  
pp. 1-5
Author(s):  
Li Li ◽  
Zhi-Li Zhou ◽  
Jing-Song Hong

AbstractA novel technique to add an extra Bluetooth band and triple notch bands simultaneously to a compact ultra-wideband (UWB) monopole antenna is presented. This scissors-shaped UWB antenna, covering 2.9 GHz–12.5 GHz, is fed by a special microstrip line. To create an extra Bluetooth band centered at 2.45 GHz, an arc-shaped stub is attached to the high concentrated current area right of the feed line and a rectangular slot is etched in the radiation patch. Besides, a notch band for WLAN (5.6 GHz–6.15 GHz) is also obtained. In addition, by connecting two asymmetric stubs to the feed line, two other notch bands in 3.28 GHz–3.8 GHz for WiMAX and 7.1 GHz–7.76 GHz for downlink of X-band satellite communication systems are achieved. The proposed antenna with compact size of 20 mm × 26 mm is fabricated and measured, showing stable antenna gain and good omni-directional radiation patterns in H-plane.


Sign in / Sign up

Export Citation Format

Share Document