Design of Ultra-Wideband Tapered Slot Antenna by Using Binomial Transformer with Corrugation

Frequenz ◽  
2017 ◽  
Vol 71 (5-6) ◽  
Author(s):  
Yosita Chareonsiri ◽  
Wanwisa Thaiwirot ◽  
Prayoot Akkaraekthalin

AbstractIn this paper, the tapered slot antenna (TSA) with corrugation is proposed for UWB applications. The multi-section binomial transformer is used to design taper profile of the proposed TSA that does not involve using time consuming optimization. A step-by-step procedure for synthesis of the step impedance values related with step slot widths of taper profile is presented. The smooth taper can be achieved by fitting the smoothing curve to the entire step slot. The design of TSA based on this method yields results with a quite flat gain and wide impedance bandwidth covering UWB spectrum from 3.1 GHz to 10.6 GHz. To further improve the radiation characteristics, the corrugation is added on the both edges of the proposed TSA. The effects of different corrugation shapes on the improvement of antenna gain and front-to-back ratio (F-to-B ratio) are investigated. To demonstrate the validity of the design, the prototypes of TSA without and with corrugation are fabricated and measured. The results show good agreement between simulation and measurement.

2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Sahar Chagharvand ◽  
M. R. B. Hamid ◽  
M. R. Kamarudin ◽  
Mohsen Khalily

This paper presents a single layer planar slot antenna for dual band operation. The antenna is fed by a coplanar waveguide (CPW) with two inverted C-shaped resonators to achieve the dual band operation. The impedance bandwidth for ǀS11ǀ < -10dB is 14% in lower band and 7% in higher band. The antenna prototype’s electromagnetic performance, impedance bandwidth, radiation pattern, and antenna gain were measured. The proposed configuration offers a relatively compact, easy to fabricate and dual band performance providing gain between 2 and 4 dBi. The designed antenna has good dual bandwidth covering 3.5 WiMAX and 5.8 WLAN tasks. Experimental and numerical results also showed good agreement after comparison.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Aiting Wu ◽  
Zhonghai Zhang ◽  
Boran Guan

The shape of the tuning stub of the wide slot printed antenna is an important factor which affects the antenna’s performances. In this paper, a new design and optimization method of wideband printed slot antenna using a shape blending algorithm is presented. The proposed antenna consists of a wide rectangular slot and a tuning stub, whose profile is formed by the shape blending outcome from a pie and a diamond shape. The method is used to design an ultra-wideband antenna. The impact on the impedance bandwidth through the antenna geometry change with the different shape blending results has been investigated and analyzed. To verify the proposed design, the antenna prototype was designed, fabricated, and measured. The measured results are compared with the simulation and show good agreement.


2018 ◽  
Vol 68 (2) ◽  
pp. 197 ◽  
Author(s):  
Arvind Kumar ◽  
S. Raghavan

In this study, a planar cavity-backed bow-tie-complementary-ring-slot antenna is proposed, and a new approach for bandwidth enhancement using a shorted-via is introduced. A shorted-via concept overcomes the narrow impedance bandwidth of a conventional substrate integrated waveguide cavity-backed antenna. By adjusting the location of the shorted-via (placed just above the centroid of the radiating slot), the individual bandwidth of the lower and higher order resonances has been tuned below -10 dB criterion, which results in the broadening of the bandwidth. Finally, the antenna is proficient to operate for an impedance bandwidth of 15.71 per cent, ranging from 12.02~14.07 GHz. The proposed antenna shows a gain of better than 4 dBi within the operating band with less than 0.5 dBi variation. Moreover, the antenna preserves good radiation characteristics, which is similar to that of the conventional metallic counterpart. To validate the simulated results, an antenna is fabricated and tested. The simulated results in terms of the reflection coefficient, gain, and radiation patterns are in good agreement with the measured results.


2015 ◽  
Vol 9 (2) ◽  
pp. 373-379 ◽  
Author(s):  
Sarthak Singhal ◽  
Ankit Pandey ◽  
Amit Kumar Singh

A coplanar waveguide (CPW)-fed circular-shaped fractal antenna with third iterative orthogonal elliptical slot for ultra-wideband applications is presented. The bandwidth is enhanced by using successive iterations of radiating patch, CPW feedline, and tapered ground plane. An impedance bandwidth of 2.9–20.6 GHz is achieved. The designed antenna has omnidirectional radiation patterns along with average peak realized gain of 3.5 dB over the entire frequency range of operation. A good agreement is observed between the simulated and experimental results. This antenna structure has the advantages of miniaturized size and wide bandwidth in comparison to previously reported fractal structures.


Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 83
Author(s):  
Mohammad Mahdi Honari ◽  
Mohammad Saeid Ghaffarian ◽  
Rashid Mirzavand

In this paper, a miniaturized ultra-wideband antipodal tapered slot antenna with exponential strip arms is presented. Two exponential arms with designed equations are optimized to reduce the lower edge cut-off frequency of the impedance bandwidth from 1480 MHz to 720 MHz, resulting in antenna miniaturization by 51%. This approach also improves antenna bandwidth without compromising the radiation characteristics. The dimension of the proposed antenna structure including the feeding line and transition is 158 × 125 × 1 mm3. The results show that a peak gain more than 1 dBi is achieved all over the impedance bandwidth (0.72–17 GHz), which is an improvement to what have been reported for antipodal tapered slot and Vivaldi antennas with similar size.


Author(s):  
B. Hammache ◽  
A. Messai ◽  
I. Messaoudene ◽  
T. A. Denidni

Abstract In this paper, a compact stepped slot antenna for ultra-wideband (UWB) applications is proposed. A very small size and UWB bandwidth operation are achieved by integrating a stepped slot in the back side of the antenna. This stepped slot is excited by using a 50 Ω-feed line in the top side of the antenna. The antenna is characterized by an impedance bandwidth between 3.05 GHz and more than 12 GHz. The dimensions of the antenna are 17 mm × 8 mm × 1.27 mm, which leads to the most compact size compared with other works in the literature. The integrated stepped slot is divided into additional elementary slots, where each elementary slot has a matching point. Adding these elementary slots allows to increase further the operating bandwidth. The radiation pattern of the compact stepped slot antenna is omnidirectional in the H-plane and bidirectional in the E-plane. The measurement results agree well with the simulated ones in terms of impedance matching and radiation pattern.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 453
Author(s):  
Sharadindu Gopal Kirtania ◽  
Bachir Adham Younes ◽  
Abdul Rakib Hossain ◽  
Tutku Karacolak ◽  
Praveen Kumar Sekhar

In this article, an inkjet-printed circular-shaped monopole ultra-wideband (UWB) antenna with an inside-cut feed structure was implemented on a flexible polyethylene terephthalate (PET) substrate. The coplanar waveguide (CPW)-fed antenna was designed using ANSYS high-frequency structural simulator (HFSS), which operates at 3.04–10.70 GHz and 15.18–18 GHz (upper Ku band) with a return loss < −10 dB and a VSWR < 2. The antenna, with the dimensions of 47 mm × 25 mm × 0.135 mm, exhibited omnidirectional radiation characteristics over the entire impedance bandwidth, with an average peak gain of 3.94 dBi. The simulated antenna structure was in good agreement with the experiment’s measured results under flat and bending conditions, making it conducive for flexible and wearable Internet of things (IoT) applications.


Author(s):  
Madan Kumar Sharma ◽  
Mithilesh Kumar ◽  
J.P. Saini

This article describes how a compact, low profile Ultra-wideband (UWB) monopole antenna with a defected ground structure is designed and demonstrated experimentally. The design and experimentation activities have been carried out with the help of a CST Microwave studio tool. The UWB characteristics of the proposed antenna are achieved with a modification of the ground structure of the referenced antenna with novel L shaped defected ground structure (DGS). Both antennas are fabricated on the same substrate with the dimensions of 28.3 x 24 mm2. The comparative analysis of the results for both antennas clearly indicate that the proposed UWB monopole antenna enhanced the impedance bandwidth from 3.7 GHz – 14.9 GHz without DGS and to 3.4 GHz – 20 GHz with DGS. The enhanced bandwidth, constant group delay and good radiation characteristics of the proposed antenna have identified it as a good candidate for portable UWB applications.


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Xianming Qing ◽  
Zhi Ning Chen ◽  
Michael Yan Wah Chia

Parametric study of the impedance and radiation characteristics of a dual elliptically tapered antipodal slot antenna (DETASA) is undertaken in this paper. Usually, the performance of the DETASA is sensitive to the parameters, the effects of major geometry parameters of the radiators and feeding transition of the DETASA on antenna performance are investigated across the frequency range of 1–18 GHz. The information derived from this study provides guidelines for the design and optimization of the DETASAs which are widely used for UWB applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
S. Vongsack ◽  
S. Lamultree ◽  
P. Osklang ◽  
C. Phongcharoenpanich ◽  
S. Kosulvit ◽  
...  

This paper presents an ultra-wideband (UWB) rectangular ring antenna excited by a circular disc monopole (CDM) with a conducting rod and two double ridges to radiate bidirectional pattern with constant beam direction along the entire UWB frequency range of 3.1–10.6 GHz. The conducting rod and double ridges at the upper wall of the ring are added to solve the tilted beam problem at the higher edge frequency whereas the double ridges at the lower wall are used to enhance the impedance bandwidth. The dimensions of the rectangular ring and the CDM are initially considered to achieve the bidirectional pattern with the suitable resonant frequencies and bandwidth. Then, the parameters of copper rod and two double ridges are determined by parametric study using CST Microwave Studio simulation software. The prototype antenna was fabricated, and the measured results show good agreement with the simulated ones. The obtained bandwidth of |S11|<-10 dB can cover the UWB frequency range as well as the bidirectional beam radiation with constant beam direction (θ=0°,180° and ϕ=90°). The minimum and maximum measured gains are 3.1 dBi to 5.3 dBi, respectively. The proposed antenna possesses compact size with good radiation performance that can be a promising candidate for UWB applications.


Sign in / Sign up

Export Citation Format

Share Document