scholarly journals Parametric Study of Ultra-Wideband Dual Elliptically Tapered Antipodal Slot Antenna

2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Xianming Qing ◽  
Zhi Ning Chen ◽  
Michael Yan Wah Chia

Parametric study of the impedance and radiation characteristics of a dual elliptically tapered antipodal slot antenna (DETASA) is undertaken in this paper. Usually, the performance of the DETASA is sensitive to the parameters, the effects of major geometry parameters of the radiators and feeding transition of the DETASA on antenna performance are investigated across the frequency range of 1–18 GHz. The information derived from this study provides guidelines for the design and optimization of the DETASAs which are widely used for UWB applications.

2019 ◽  
Vol 8 (3) ◽  
pp. 57-63
Author(s):  
A. Zitouni ◽  
N. Boukli-Hacene

In this article, a novel T-shaped compact dielectric resonator antenna for ultra-wideband (UWB) application is presented and studied. The proposed DRA structure consists of T-shaped dielectric resonator fed by stepped microstrip monopole printed antenna, partial ground plane and an inverted L-shaped stub. The inverted L-shaped stub and parasitic strip are utilized to improve impedance bandwidth. A comprehensive parametric study is carried out using HFSS software to achieve the optimum antenna performance and optimize the bandwidth of the proposed antenna. From the simulation results, it is found that the proposed antenna structure operates over a frequency range of 3.45 to more than 28 GHz with a fractional bandwidth over 156.12%, which covers UWB application, and having better gain and radiation characteristics.


Frequenz ◽  
2017 ◽  
Vol 71 (5-6) ◽  
Author(s):  
Yosita Chareonsiri ◽  
Wanwisa Thaiwirot ◽  
Prayoot Akkaraekthalin

AbstractIn this paper, the tapered slot antenna (TSA) with corrugation is proposed for UWB applications. The multi-section binomial transformer is used to design taper profile of the proposed TSA that does not involve using time consuming optimization. A step-by-step procedure for synthesis of the step impedance values related with step slot widths of taper profile is presented. The smooth taper can be achieved by fitting the smoothing curve to the entire step slot. The design of TSA based on this method yields results with a quite flat gain and wide impedance bandwidth covering UWB spectrum from 3.1 GHz to 10.6 GHz. To further improve the radiation characteristics, the corrugation is added on the both edges of the proposed TSA. The effects of different corrugation shapes on the improvement of antenna gain and front-to-back ratio (F-to-B ratio) are investigated. To demonstrate the validity of the design, the prototypes of TSA without and with corrugation are fabricated and measured. The results show good agreement between simulation and measurement.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 127 ◽  
Author(s):  
Ján Gamec ◽  
Miroslav Repko ◽  
Mária Gamcová ◽  
Iveta Gladišová ◽  
Pavol Kurdel ◽  
...  

This article describes the design and implementation of a low-profile sinuous slot antenna, intended for ultra-wideband (UWB) sensor networks, which can be produced on one conductive layer. The article explains the design and optimization of the sinuous slot antenna and its modifications, including its sinusoidal curve shape. Other modifications were aimed at optimizing the antenna feeding. Desirable properties of the designed and implemented antenna modifications were verified both by simulation and empirically. Experimental measurements of the antenna’s properties were carried out using a vector network analyzer in an anechoic chamber and also by a pulsed UWB radar in the frequency range from 0.1 to 6 GHz. The low-profile antennas were implemented on a Rogers RO3206 substrate.


2018 ◽  
Vol 7 (2.16) ◽  
pp. 11
Author(s):  
Sanjeev Kumar ◽  
Ravi Kumar ◽  
Rajesh Kumar Vishwakarma

A microstrip antenna with a circular disc design and modified ground is proposed in this paper. Circular shapes of different size have been slotted out from the radiating patch for achieving extended ultra wideband (UWB) with GSM/Bluetooth bands with maximum bandwidth of 17.7 GHz (0.88-18.6 GHz). Further, characteristic of dual notch band is achieved, when a combination of T and L-shaped slots are etched into the circular disc and ground plane respectively. Change in length of slots is controlling the notch band characteristics. The proposed antenna has rejection bandwidth of 1.3-2.2 GHz (LTE band), 3.2-3.9 GHz (WiMAX band) and 5.2-6.1 GHz (WLAN band) respectively. It covers the frequency range of 0.88-18.5 GHz with the VSWR of less than 2. Also, an equivalent parallel resonant circuit has been demonstrated for band notched frequencies of the designed antenna. The gain achieved by the proposed antenna is 6.27 dBi. This antenna has been designed, investigated and fabricated for GSM, Bluetooth, UWB, X and Ku band applications. The stable gain including H & E-plane radiation pattern with good directivity and omnidirectional behavior is achieved by the proposed antenna. Measured bandwidths are 0.5 GHz, 0.8 GHz, 1.1 GHz and 11.7 GHz respectively. 


2020 ◽  
Vol 10 (2) ◽  
pp. 504 ◽  
Author(s):  
Halgurd N. Awl ◽  
Yadgar I. Abdulkarim ◽  
Lianwen Deng ◽  
Mehmet Bakır ◽  
Fahmi F. Muhammadsharif ◽  
...  

In this work, the impact of substrate type and design dimensions on bow-tie microstrip antenna performance and bandwidth improvement is presented both numerically and experimentally at 4–8 GHz. The finite integration technique (FIT)-based high-frequency electromagnetic solver, CST Microwave Studio, was used for the simulation analysis. For this purpose, four bow-tie microstrip antennas were designed, fabricated, and measured upon using different materials and substrate thicknesses. Precise results were achieved and the simulated and experimental results showed a good agreement. The performance of each antenna was analyzed and the impact of changing material permittivity, antenna dimensions and substrate thicknesses on antenna performance were investigated and discussed. The measured results indicated that the slot bow-tie antenna, which is one of the novel aspects of this study, is well matched and a 2-GHz bandwidth [5–7 GHz] is obtained, which is about 50% bandwidth in comparison with the wideband applications [4–8 GHz]. The proposed structure is useful in ultra-wideband (UWB) applications. This study provides guidance in selecting material types and thicknesses for microstrip antennas based on desired applications.


Author(s):  
Tuanjai Archevapanich ◽  
Mayuree Lertwatechakul ◽  
Paitoon Rakluea ◽  
Noppin Anantrasirichai ◽  
Vanvisa Chutchavong

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1411 ◽  
Author(s):  
Amjad Iqbal ◽  
Amor Smida ◽  
Nazih Mallat ◽  
Mohammad Islam ◽  
Sunghwan Kim

A minimally-sized, triple-notched band ultra-wideband (UWB) antenna, useful for many applications, is designed, analyzed, and experimentally validated in this paper. A modified maple leaf-shaped main radiating element with partial ground is used in the proposed design. An E-shaped resonator, meandered slot, and U-shaped slot are implemented in the proposed design to block the co-existing bands. The E-shaped resonator stops frequencies ranging from 1.8–2.3 GHz (Advanced Wireless System (AWS1–AWS2) band), while the meandered slot blocks frequencies from 3.2–3.8 GHz (WiMAX band). The co-existing band ranging from 5.6–6.1 GHz (IEEE 802.11/HIPERLANband) is blocked by utilizing the U-shaped section in the feeding network. The notched bands can be independently controlled over a wide range of frequencies using specific parameters. The proposed antenna is suitable for many applications because of its flat gain, good radiation characteristics at both principal planes, uniform group delay, and non-varying transfer function ( S 21 ) for the entire UWB frequency range.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Thomas Kaufmann ◽  
Akhilesh Verma ◽  
Van-Tan Truong ◽  
Bo Weng ◽  
Roderick Shepherd ◽  
...  

A planar antenna for ultra-wideband (UWB) applications covering the 3.1–10.6 GHz range has been designed as a test bed for efficiency measurements of antennas manufactured using polymer conductors. Two types of conductive polymers, PEDOT and PPy (polypyrrole), with very different thicknesses and conductivities have been selected as conductors for the radiating elements. A comparison between measured radiation patterns of the conductive polymers and a copper reference antenna allows to estimate the conductor losses of the two types of conductive polymers. For a 158 μm thick PPy polymer, an efficiency of almost 80% can be observed over the whole UWB spectrum. For a 7 μm thick PEDOT layer, an average efficiency of 26.6% demonstrates, considering the room for improvement, the potential of this type of versatile materials as flexible printable alternative to conductive metallic paints. The paper demonstrates that, even though the PEDOT conductivity is an order of magnitude larger than that of PPy, the thicker PPy layer leads to much higher efficiency over the whole UWB frequency range. This result highlights that high efficiency can be achieved not only through high conductivity, but also through a sufficiently thick layer of conductive polymers.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Aiting Wu ◽  
Zhonghai Zhang ◽  
Boran Guan

The shape of the tuning stub of the wide slot printed antenna is an important factor which affects the antenna’s performances. In this paper, a new design and optimization method of wideband printed slot antenna using a shape blending algorithm is presented. The proposed antenna consists of a wide rectangular slot and a tuning stub, whose profile is formed by the shape blending outcome from a pie and a diamond shape. The method is used to design an ultra-wideband antenna. The impact on the impedance bandwidth through the antenna geometry change with the different shape blending results has been investigated and analyzed. To verify the proposed design, the antenna prototype was designed, fabricated, and measured. The measured results are compared with the simulation and show good agreement.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Gokmen Isik ◽  
Serkan Topaloglu

An ultrawideband antenna is designed, simulated, and realized. To overcome the narrow bandwidth characteristics of basic patch antennas, the structure of the radiation pattern is optimized by the aid of elliptical and rectangular patches. Also triangular patches are applied to the antenna edge in order to enhance the VSWR and gain properties. A typical VSWR of 1.5 (less than 2 in the whole frequency range) and a typical gain of 2 dBi (mainly above 1 dBi in the whole frequency range) are observed. The simulations present that the designed antenna has a bandwidth ratio of ~5 : 1 within the frequency range of 4–19.1 GHz with compact dimensions of 25 × 26 mm2. It is fabricated on a 0.5 mm thick, RO3035 substrate. The input impedance, gain, and radiation characteristics of the antenna are also presented. With these properties, it is verified that, with its novel shape, the proposed antenna can be used for various UWB applications.


Sign in / Sign up

Export Citation Format

Share Document