scholarly journals Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater

2020 ◽  
Vol 9 (1) ◽  
pp. 171-181 ◽  
Author(s):  
Naresh Kumar Sethy ◽  
Zeenat Arif ◽  
Pradeep Kumar Mishra ◽  
Pradeep Kumar

AbstractGreen synthesis is a simple, non-toxic, economical and eco-friendly approach for the synthesis of nanoparticles. In the present work, nanoparticles of titanium dioxide (TiO2 NPs) were synthesized using an aqueous solution of Syzygium cumini leaf extract as a capping agent. These green synthesized TiO2 NPs were further evaluated for photo catalytic removal of lead from industrial wastewater. Obtained nanoparticles were characterized using: high-resolution scanning electron microscopy (HRSEM), high-resolution transmission electron microscopy (HRTEM), X-ray energy dispersive spectroscopy (EDS), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) and Brunauer-Emmett-Teller (BET). Obtained results revealed that synthesized TiO2 NPs possess spherical morphology with anatase phase with a large BET surface area of 105 m2/g. Photo catalytic studies of TiO2 NPs for lead removal from explosive wastewater were performed in a self-designed reactor. Inductive coupled plasma spectroscopy (ICP) was used to determine the lead concentration. Obtained results witnessed 75.5% removal in chemical oxygen demand (COD) and 82.53% removal in lead (Pb2+). This application of green TiO2 NPs is being explored for the first time.

Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1002 ◽  
Author(s):  
Kothaplamoottil Sivan Saranya ◽  
Vinod Vellora Thekkae Padil ◽  
Chandra Senan ◽  
Rajendra Pilankatta ◽  
Kunjumon Saranya ◽  
...  

The present study reports a green and sustainable method for the synthesis of titanium dioxide (TiO2) nanoparticles (NPs) from titanium oxysulfate solution using Kondagogu gum (Cochlospermum gossypium), a carbohydrate polymer, as the NPs formation agent. The synthesized TiO2 NPs were categorized by techniques such as X-Ray Diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy analysis, Raman spectroscopy, scanning electron microscope- Energy-dispersive X-ray spectroscopy (SEM-EDX), Transmission electron microscopy (TEM), High-resolution transmission electron microscopy (HR-TEM), UV-visible spectroscopy, Brunauer-Emmett-Teller (BET) surface area and particle size analysis. Additionally, the photocatalytic actions of TiO2 NPs were assessed with regard to their ability to degrade an organic dye (methylene blue) from aqueous solution in the presence of solar light. Various parameters affecting the photocatalytic activity of the TiO2 NPs were examined, including catalyst loading, reaction time, pH value and calcination temperature of the aforementioned particles. This green synthesis method involving TiO2 NPs explores the advantages of inexpensive and non-toxic precursors, the TiO2 NPs themselves exhibiting excellent photocatalytic activity against dye molecules.


2018 ◽  
Vol 50 (3) ◽  
pp. 291-298
Author(s):  
H. Sutrisno ◽  
E.D. Siswani ◽  
K.S. Budiasih

Titanium dioxide (TiO2)-nanotubes were prepared by a simple technique reflux. The morphologies and microstructures of nanotubes were characterized by high resolution scanning electron microscopy (HRSEM), high resolution transmission electron microscopy (TEM), powder X-ray diffraction (XRD,) energy dispersive X-ray spectroscopy (EDS) and surface area analyzer. The microstructures of TiO2 phases obtained from the sintering process of TiO2-nanotubes for 1 hour at various temperatures from 100 to 1000?C at intervals of 50?C were investigated from the XRD diffractograms. The analyses of morphologies and microstructures from HRSEM and HRTEM images describe the sample as nanotubes. The nanotube is single phase exhibiting TiO2(B) structure. The XRD patterns show that TiO2(B)-nanotubes transform into anatase phase and then become rutile due to increasing sintering temperatures.


Author(s):  
Robert A. Grant ◽  
Laura L. Degn ◽  
Wah Chiu ◽  
John Robinson

Proteolytic digestion of the immunoglobulin IgG with papain cleaves the molecule into an antigen binding fragment, Fab, and a compliment binding fragment, Fc. Structures of intact immunoglobulin, Fab and Fc from various sources have been solved by X-ray crystallography. Rabbit Fc can be crystallized as thin platelets suitable for high resolution electron microscopy. The structure of rabbit Fc can be expected to be similar to the known structure of human Fc, making it an ideal specimen for comparing the X-ray and electron crystallographic techniques and for the application of the molecular replacement technique to electron crystallography. Thin protein crystals embedded in ice diffract to high resolution. A low resolution image of a frozen, hydrated crystal can be expected to have a better contrast than a glucose embedded crystal due to the larger density difference between protein and ice compared to protein and glucose. For these reasons we are using an ice embedding technique to prepare the rabbit Fc crystals for molecular structure analysis by electron microscopy.


Author(s):  
G. Van Tendeloo ◽  
J. Van Landuyt ◽  
S. Amelinckx

Polytypism has been studied for a number of years and a wide variety of stacking sequences has been detected and analysed. SiC is the prototype material in this respect; see e.g. Electron microscopy under high resolution conditions when combined with x-ray measurements is a very powerful technique to elucidate the correct stacking sequence or to study polytype transformations and deviations from the ideal stacking sequence.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Yun Lu ◽  
David C. Joy

High resolution scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDXA) were performed to investigate microparticles in blended cements and their hydration products containing sodium-rich chemical wastes. The physical appearance of powder particles and the morphological development at different hydration stages were characterized by using high resolution SEM Hitachi S-900 and by SEM S-800 with a EDX spectrometer. Microparticles were dispersed on the sample holder and glued by 1% palomino solution. Hydrated bulk samples were dehydrated by acetone and mounted on the holder by silver paste. Both fracture surfaces and flat cutting sections of hydrating samples were prepared and examined. Some specimens were coated with an 3 nm thick Au-Pd or Cr layer to provide good conducting surfaces. For high resolution SEM S-900 observations the accelerating voltage of electrons was 1-2 KeV to protect the electron charging. Microchemical analyses were carried out by S800/EDS equipped with a LINK detector of take-off angle =40°.


Author(s):  
W. Coene ◽  
F. Hakkens ◽  
T.H. Jacobs ◽  
K.H.J. Buschow

Intermetallic compounds of the type RE2Fe17Cx (RE= rare earth element) are promising candidates for permanent magnets. In case of Y2Fe17Cx, the Curie temperature increases from 325 K for x =0 to 550 K for x = 1.6 . X ray and electron diffraction reveal a carbon - induced structural transformation in Y2Fe17Cx from the hexagonal Th2Ni17 - type (x < 0.6 ) to the rhombohedral Th2Zn17 - type ( x ≥ 0.6). Planar crystal defects introduce local sheets of different magnetic anisotropy as compared with the ordered structure, and therefore may have an important impact on the coercivivity mechanism .High resolution electron microscopy ( HREM ) on a Philips CM30 / Super Twin has been used to characterize planar crystal defects in rhombohedral Y2Fe17Cx ( x ≥ 0.6 ). The basal plane stacking sequences are imaged in the [100] - orientation, showing an ABC or ACB sequence of Y - atoms and Fe2 - dumbbells, for both coaxial twin variants, respectively . Compounds resulting from a 3 - week annealing treatment at high temperature ( Ta = 1000 - 1100°C ) contain a high density of planar defects.


1999 ◽  
Vol 82 (08) ◽  
pp. 271-276 ◽  
Author(s):  
Glen Spraggon ◽  
Stephen Everse ◽  
Russell Doolittle

IntroductionAfter a long period of anticipation,1 the last two years have witnessed the first high-resolution x-ray structures of fragments from fibrinogen and fibrin.2-7 The results confirmed many aspects of fibrinogen structure and function that had previously been inferred from electron microscopy and biochemistry and revealed some unexpected features. Several matters have remained stubbornly unsettled, however, and much more work remains to be done. Here, we review several of the most significant findings that have accompanied the new x-ray structures and discuss some of the problems of the fibrinogen-fibrin conversion that remain unresolved. * Abbreviations: GPR—Gly-Pro-Arg-derivatives; GPRPam—Gly-Pro-Arg-Pro-amide; GHRPam—Gly-His-Arg-Pro-amide


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1238
Author(s):  
Garven M. Huntley ◽  
Rudy L. Luck ◽  
Michael E. Mullins ◽  
Nick K. Newberry

Four naturally occurring zeolites were examined to verify their assignments as chabazites AZLB-Ca and AZLB-Na (Bowie, Arizona) and clinoptilolites NM-Ca (Winston, New Mexico) and NV-Na (Ash Meadows, Nevada). Based on powder X-ray diffraction, NM-Ca was discovered to be mostly quartz with some clinoptilolite residues. Treatment with concentrated HCl (12.1 M) acid resulted in AZLB-Ca and AZLB-Na, the chabazite-like species, becoming amorphous, as confirmed by powder X-ray diffraction. In contrast, NM-Ca and NV-Na, which are clinoptilolite-like species, withstood boiling in concentrated HCl acid. This treatment removes calcium, magnesium, sodium, potassium, aluminum, and iron atoms or ions from the framework while leaving the silicon framework intact as confirmed via X-ray fluorescence and diffraction. SEM images on calcined and HCl treated NV-Na were obtained. BET surface area analysis confirmed an increase in surface area for the two zeolites after treatment, NM-Ca 20.0(1) to 111(4) m2/g and NV-Na 19.0(4) to 158(7) m2/g. 29Si and 27Al MAS NMR were performed on the natural and treated NV-Na zeolite, and the data for the natural NV-Na zeolite suggested a Si:Al ratio of 4.33 similar to that determined by X-Ray fluorescence of 4.55. Removal of lead ions from solution decreased from the native NM-Ca, 0.27(14), NV-Na, 1.50(17) meq/g compared to the modified zeolites, 30 min HCl treated NM-Ca 0.06(9) and NV-Na, 0.41(23) meq/g, and also decreased upon K+ ion pretreatment in the HCl modified zeolites.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1068
Author(s):  
Xinyue Zhang ◽  
Yani Guo ◽  
Wenjun Li ◽  
Jinyuan Zhang ◽  
Hailiang Wu ◽  
...  

The treatment of wastewater containing heavy metals and the utilization of wool waste are very important for the sustainable development of textile mills. In this study, the wool keratin modified magnetite (Fe3O4) powders were fabricated by using wool waste via a co-precipitation technique for removal of Cu2+ ions from aqueous solutions. The morphology, chemical compositions, crystal structure, microstructure, magnetism properties, organic content, and specific surface area of as-fabricated powders were systematically characterized by various techniques including field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), thermogravimetric (TG) analysis, and Brunauer–Emmett–Teller (BET) surface area analyzer. The effects of experimental parameters such as the volume of wool keratin hydrolysate, the dosage of powder, the initial Cu2+ ion concentration, and the pH value of solution on the adsorption capacity of Cu2+ ions by the powders were examined. The experimental results indicated that the Cu2+ ion adsorption performance of the wool keratin modified Fe3O4 powders exhibited much better than that of the chitosan modified ones with a maximum Cu2+ adsorption capacity of 27.4 mg/g under favorable conditions (0.05 g powders; 50 mL of 40 mg/L CuSO4; pH 5; temperature 293 K). The high adsorption capacity towards Cu2+ ions on the wool keratin modified Fe3O4 powders was primarily because of the strong surface complexation of –COOH and –NH2 functional groups of wool keratins with Cu2+ ions. The Cu2+ ion adsorption process on the wool keratin modified Fe3O4 powders followed the Temkin adsorption isotherm model and the intraparticle diffusion and pseudo-second-order adsorption kinetic models. After Cu2+ ion removal, the wool keratin modified Fe3O4 powders were easily separated using a magnet from aqueous solution and efficiently regenerated using 0.5 M ethylene diamine tetraacetic acid (EDTA)-H2SO4 eluting. The wool keratin modified Fe3O4 powders possessed good regenerative performance after five cycles. This study provided a feasible way to utilize waste wool textiles for preparing magnetic biomass-based adsorbents for the removal of heavy metal ions from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document