scholarly journals Continuous sulfonation of hexadecylbenzene in a microreactor

2021 ◽  
Vol 10 (1) ◽  
pp. 219-229
Author(s):  
Yiming Xu ◽  
Suli Liu ◽  
Weijun Meng ◽  
Hua Yuan ◽  
Weibao Ma ◽  
...  

Abstract Heavy alkyl benzene sulfonates are inexpensive surfactants that are extensively used as oil-displacing agents during tertiary oil recovery. Among these, C16–18 heavy alkyl benzene sulfonates possess an excellent ability to reduce the oil-water interface tension. In this study, hexadecylbenzene sulfonic acid (HBSA) was synthesised in a continuous stirred-tank microreactor using a continuous method with 1,2-dichloroethane (EDC) dilution. Post-sulfonation liquid SO3 solution was used as a sulfonating agent for hexadecylbenzene (HDB). The effects of reaction conditions, such as the SO3:HDB molar ratio, sulfonation temperature and sulfonation agent concentration, on the yield and purity of the product were investigated. Optimisation of the reaction process yielded high-quality HBSA samples with a purity exceeding 99 wt%. The continuous sulfonation process significantly enhanced the production and efficiency in the case of a considerably short residence time (10 s) in the reactor, without the need for aging. The results of this study demonstrate significant potential for application in industrial production.

2011 ◽  
Vol 65 (5) ◽  
pp. 541-549 ◽  
Author(s):  
Milica Sovrlic ◽  
Milutin Milosavljevic ◽  
Aleksandar Marinkovic ◽  
Jasmina Djukanovic ◽  
Danijela Brkovic ◽  
...  

A optimized synthesis of N-alkyl, N,N-dialkyl- and N-cycloalkyl-O-isobutyl thioncarbamates by aminolysis of sodium isobutylxanthogenic acid (NaiBXAc) and primary, secondary and cycloalkyl amines was developed at laboratory scale and applied at semi-industrial level. Studies on dependence of N-n-propyl-O-isopropylthiocarbamate yield and purity with respect to reaction parameters: reaction time and molar ratio of n-propylamine and NaiBXAc, were performed. In such way, optimal reaction conditions for synthesis of N-alkyl, N,N-dialkyl- and N-cycloalkyl-O-isobutyl thioncarbamates, by aminolysis of NaiBXAc, were established. Also, comparative results of thioncarbamates synthesis starting from potassium isobutyl xanthate (KiBX) and corresponding amines in presence of different oxidants: hydrogen peroxide, sodium hypochlorite and new oxidative agent potassium peroxodisulfate were evaluated. Synthesized compounds have been fully characterized by FTIR, 1H and 13C NMR and MS data, elemental analysis and purity have been determined by gas chromatographic method (GC). According to our knowledge, ten synthesized thioncarbamates are for the first time characterized. Synthesized compounds could be used as selective reagents for flotation of copper and zinc ores. The presented methods offer several benefits, namely, high product yields and purity, simple operation, mild reaction conditions without use of hazardous organic solvents, while some of them could be implemented on industrial scale production.


1980 ◽  
Vol 20 (06) ◽  
pp. 508-520 ◽  
Author(s):  
Robert E. Gladfelter ◽  
Surendra P. Gupta

Abstract This paper deals with the oil/water bank propagation in a tertiary oil recovery process. Oil/water bank propagation was studied in a series of laboratory micellar floods and simultaneous oil/water flow tests using a microwave scanning apparatus for measuring in-situ dynamic oil saturation. It was observed that a high oil saturation region, or hump, developed at the leading edge of the oil/water bank and grew linearly with distance. A lower steady-state oil saturation region was observed behind the hump. As the hump was produced from the core, high initial oil fractions were observed, as often seen in laboratory micellar floods. This is the result of the observed hysteresis in fractional flow behavior. A graphical method of predicting the occurrence of a hump, its rate of growth, and saturations within an oil/water bank was developed using the observed hysteresis in fractional flow. Using this prediction procedure, it was concluded that in a tertiary oil recovery process, oil breakthrough time or rate of advance of the oil/water bank, oil saturation at the leading edge, and initial produced oil fractions are only functions of the oil-saturation-increasing fractional flow curve and are not necessarily indications of oil recovery efficiency. Introduction During a tertiary oil recovery process, a small slug of displacing fluid (e.g., a micellar fluid) mobilizes residual oil and water and forms an oil/water bank. It is important to understand the propagation behavior of the oil/water bank in a tertiary oil recovery process since it affects the oil breakthrough time and initial oil cuts. This understanding also will aid in the interpretation of oil displacement tests. Moreover, oil breakthrough time and initial oil cuts have been used for judging the efficiency of a tertiary oil recovery process. Oil/water bank propagation was studied in a series of micellar floods and oil/water flow tests using a microwave scanning apparatus for measuring in-situ dynamic oil saturation profiles. Experimental Details The microwave scanning apparatus used is similar to that discussed by Parsons1 and Parsons and Jones.2 Microwaves are transmitted through a core where they are partially absorbed by the water molecules. The measured microwave power attenuation, or degree of absorption of the microwave energy, is a direct measure of the quantity of water and, consequently, of the oil saturation in an oil/water system since the oil does not absorb the microwave energy. The microwave scanning apparatus is capable of measuring the dynamic oil saturation profiles during pressure-monitored laboratory micellar floods and other oil/water flow tests. Fig. 1 is a schematic of the apparatus. Additional experimental details are given in Appendix A. Displacement tests were conducted at room temperature in 120-cm-long rectangular Berea cores (1.91 cm thick×7.62 cm wide). The brine permeability range of these cores was from 418 to 714 md, and pore volumes varied from 377 to 395 cm3. Three tertiary micellar floods were conducted in separate Berea cores with Second Wall Creek crude oil. Table 1 shows the fluid injection sequence and compositions3 for the micellar floods. In addition, simultaneous oil/water injection tests were conducted in separate Berea cores using both Second Wall Creek crude oil and refined oils (see Table 2 for the fluid injection sequence).


1974 ◽  
Vol 14 (05) ◽  
pp. 491-501 ◽  
Author(s):  
Robert N. Healy ◽  
Ronald L. Reed

Abstract Whenever water, an oil, and a surfactant equilibrate at concentrations of surfactant in excess of critical micelle concentrations, one or more microemulsions form.. In view of this, all surfactant flooding processes may involve microemulsions in situ. Ternary diagrams have been constructed for three specific microemulsion systems showing The effects of salinity and cosurfactant on phase behavior, viscosity, resistivity, optical birefringence, and interfacial tension. Using these data, micellar structure maps were prepared for the single-phase region. In this connection, Winsor's concept of intermicellar equilibrium was found consistent with microemulsion systems of interest for tertiary oil recovery. Experimental techniques are described for minimizing the extent of the multiphase region and measuring the low interfacial tensions that obtain there. Introduction GENERAL CONSIDERATIONS It is sometimes difficult to sort out the multiplicity of terminology concerning various kinds of micellar solutions and the structural states in which they exist. For example, Schulman introduced the term "micro emulsion." Winsor objects on the grounds that all emulsions are unstable and a microemulsion must be some kind of an emulsion. Tosch et al. use the phrase "micelle-containing solutions," whereas Shinoda and Kunieda prefer "swollen micellar solution." Nevertheless, the term microemulsion is convenient, is in common use, and it is only necessary to understand precisely what is meant by the term. In this paper a microemulsion is defined to be a stable, translucent micellar-solution of oil, water that may contain electrolytes, and one or more amphiphilic compounds (surfactants, alcohols, etc.). It should be noted that according to this definition a microemulsion is not an emulsion. A microemulsion may have distinct internal and external phases, but in many cases there is no identifiable external phase. phase. Since a microemulsion has at least three components -- oil, water, and surfactant - the compositional state of the system must be specified with at least three numbers. It is therefore convenient and instructive to employ a ternary representation as shown in Fig. 1. The simple situation will involve three pure components, and the multiphase region will be bounded by a continuous binodal curve. Everywhere above the binodal curve a single phase exists that undergoes transitions among various structural states as the compositional point moves about the diagram. These transitions may be gradual, reflecting an equilibrium in which there is significant coexistence of different micellar configurations, as proposed by Winsor. proposed by Winsor. In the multiphase region, the most simple, three-component system involves only two phases throughout; one is oil-external and the other water-external. SPEJ P. 491


2012 ◽  
Vol 217-219 ◽  
pp. 1363-1367 ◽  
Author(s):  
Zhen Zhong Fan ◽  
Xin Liu ◽  
Fei Wang ◽  
Yu Sheng Zhang

Abstract. Take the lauric acid, the ethylene diamine, the chloroacetic acid, the soda ash as raw material synthesized a new type of Anionic Gemini surfactants-N, N'-double lauroyl ethylene diamine two sodium acetate, The properties of the product were characterized, and the physical and chemical properties were determined. The experimental results can be seen that the anionic Gemini surfactants can greatly reduce the oil/water interface tension, and it has good viscosity properties, Thus deduced that the Gemini surfactants is better than the ordinary surfactant better table (world) surface activity, Can be used in the tertiary oil recovery field.


1979 ◽  
Vol 19 (05) ◽  
pp. 289-300 ◽  
Author(s):  
J.E. Vinatieri ◽  
P.D. Fleming

Abstract A new method is developed to represent the phase behavior of multicomponent systems. This method uses fewer pseudocomponents than true components, but unlike conventional methods in which pseudocomponents are often chosen arbitrarily, the pseudocomponents are often chosen arbitrarily, the method uses regression analysis to find a "best" set of pseudocomponents.The method is applied to two surfactant systems of the type used for tertiary oil recovery. One system contains a crude oil (from the North Burbank Unit, Osage County, OK) and the other contains a pure hydrocarbon, 1-phenyltetradecane. For both systems the representation in terms of the pseudocomponents chosen by the regression analysis is significantly more faithful than that obtained by conventional methods.Since the considerations discussed here are general, they should be applicable to a wide range of phase studies in multicomponent systems. For example, they should be illuminating when applied to oil recovery by gas injection (carbon dioxide, natural gas, etc.), and to extraction processes, as well as to surfactant systems. Introduction Systems containing surface active agents have attracted a great deal of attention in connection with tertiary oil recovery. In many of these systems optimum oil recovery has been found to be strongly correlated with the phase behavior of these systems. To understand completely the basis for these correlations, one must be able to represent the phase behavior of systems containing surfactants adequately.Surfactant systems for tertiary oil recovery usually contain at least five components: oil, water, surfactant. cosurfactant, and electrolyte. The isothermal, isobaric phase diagram of these systems can be represented in a phase diagram of these systems can be represented in a four-dimensional space. Because physical representation (in three dimensions) of such a diagram is impossible. various techniques have been developed to attempt to represent the phase behavior in lower dimensional spaces. All these techniques correspond to projections of the original diagram onto lower dimensional spaces. Although almost unlimited methods of projection exist, only a small fraction convey useful information.Two projection schemes having some similarities but different intents and consequences are straight mathematical projection and "pseudocomponent" projection. Straight mathematical projection refers to the process of directly projecting the four-dimensional data for the entire phase diagram along some specified direction onto a three-dimensional space. All information parallel to the direction of the projection is lost. For example, if the rays of projections are parallel to the oil/water edge of the phase diagram, the resulting representation contains no information about the relative amounts of oil and water in the phases. In principle, this problem can be circumvented by generating two representations corresponding to projections of the same data along two different directions. For example. a second representation could be produced corresponding to a projection parallel to the water/alcohol edge of the phase diagram. parallel to the water/alcohol edge of the phase diagram. Although neither representation contains complete information, the pair of representations does contain all information about the system. The problem with this method is that the information is not perceived easily and, since the intent of using phase diagrams is usually to make visible a summary of the phase trends, such mathematical representations are not very useful.The second and generally more useful projection scheme uses pseudocomponents. A pseudocomponent is some mixture of pure components treated as a single component. SPEJ P. 289


1982 ◽  
Vol 22 (01) ◽  
pp. 37-52 ◽  
Author(s):  
Jorge E. Puig ◽  
Elias I. Franses ◽  
Yeshayahu Talmon ◽  
H. Ted Davis ◽  
Wilmer G. Miller ◽  
...  

Abstract Surfactant waterflooding processes that rely on ultralow interfacial tensions suffer from surfactant retention by reservoir rock and from the need to avoid injectivity problems. New findings reported here open the possibility that by delivering the surfactant in vesicle form, more successful low-concentration, alcohol-free surfactant waterflooding processes can be designed. Basic studies of low concentration (less than 2 wt %) aqueous dispersions of lamellar liquid crystals of a model surfactant, Texas No. 1, have established the role of dispersed liquid crystallites in the achievement of ultralow tensions between oil and water. Recent work, including fast-freeze, cold-stage transmission electron microscopy (TEM), reveals that sonication both in the absence and the presence of sodium chloride converts particulate dispersions of Texas No. 1 into dispersions of vesicles, which are spheroidal bilayers or multilayers, less than 0.1 mum in diameter filled with aqueous phase. Vesicles ordinarily revert only very slowly to the bulk liquid crystalline state. We find, however, that their stability depends on their preparation and salinity history, and that contact with oil can accelerate greatly the reversion of a vesiculated dispersion and enable it to produce low tensions between oil and water. Tests with Berea cores show that surfactant retention and attendant pressure buildup can be reduced greatly by sonicating Texas No. 1 dispersions to convert liquid crystallites to vesicles. In simple core-flooding experiments both the unsonicated liquid crystalline dispersions and the sonicated vesicle dispersions are able to produce substantial amounts of residual oil. We point out implications and directions for further investigation. Introduction Methods of enhancing, petroleum recovery, especially tertiary recovery, following the primary and secondary stages, are under intense research and development. Among these are at least two classes of surfactant-based recovery methods-surfactant waterflooding and so-called micellar or microemulsion flooding. Gilliland and Conley suggest that of the various enhanced-recovery methods, surfactant waterflooding has the potential for the widest application in the U.S. Residual oil is trapped as blobs in porous rock by capillary forces. The number of mechanisms is limited both for reducing entrapment and for mobilizing that residual oil remaining entrapped, there by improving the microscopic displacement efficiency of a petroleum recovery process. Taber and Melrose and Brandner established that tertiary oil recovery by an immiscible flooding process is possible by increasing the capillary number, which measures the ratio of Darcy flow forces of mobilization to capillary forces of entrapment. In practice this can be achieved by lowering the oil-water interfacial tension to about 10 mN/m or less. That this is feasible in the surfactant waterflooding range-i.e. at surfactant concentration less than those characterizing the microemulsion flooding range-and in the absence of cosurfactants or cosolvents that typify microemulsions is well established. Gale and Sandvik suggested four criteria for selecting a surfactant for a tertiary oil-recovery process:low oil-water interfacial tension,low adsorption.compatibility with reservoir fluids, andlow cost. For a given oil and type of surfactant, it has been shown that the interfacial tensions are extremely sensitive to surfactant molecular weight. SPEJ P. 37^


1978 ◽  
Vol 18 (06) ◽  
pp. 409-417 ◽  
Author(s):  
D.T. Wasan ◽  
S.M. Shah ◽  
N. Aderangi ◽  
M.S. Chan ◽  
J.J. McNamara

Original manuscript received in Society of Petroleum Engineers office Sept. 20, 1977. Paper accepted for publication June 2, 1978. Revised manuscript received Aug. 2, 1978. Paper (SPE 6846) was presented at SPE-AIME 52nd Annual Fall Technical Conference and Exhibition, held in Denver, Oct. 9-12, 1977. Abstract Results of experiments on the coalescence of crude oil drops at an oil-water interface and interdroplet coalescence in crude oil-water emulsions containing petroleum sulfonates and cosurfactant as surfactant systems with other chemical additives were analyzed in terms of interracial viscosity, interfacial tension, interfacial charge, and thickness of the films surrounding the microdroplets. A qualitative correlation was found between coalescence rates and interfacial viscosities; however, there appears to be no direct correlation with interfacial tension. New insight has been gained into the influence of emulsion stability in tertiary oil recovery by surfactant/polymer flooding in laboratory core tests. We concluded that those systems that result in relatively stable emulsions yield poor coalescence rates and, hence, poor oil recovery, Introduction The ability of the surfactant/polymer system to initiate and to propagate an oil bank is the single most important feature of a successful tertiary oil-recovery process. The mechanisms of oil-bank formation and development are yet unknown. It has been suggested that without the initiation of the oil bank, the process behaves more like the unstable injection of a surfactant solution alone, where the oil is produced by entrainment or emulsification in the flowing surfactant stream. In a laboratory study of the initial displacement of residual hydrocarbons by aqueous surfactant solutions, Childress and Schechter and Wade observed that those systems that spontaneously emulsified and coalesced rapidly yielded better oil recovery than those systems that spontaneously formed stable emulsions. Recently, Strange and Talash, Whitley and Ware, and Widmeyer et al. reported results of Salem (IL) low-tension, water-flood tests that used Witco TRS 10-80 TM petroleum sulfonate surfactant solution. They found stable oil-in-water emulsions at the observer well in addition to emulsion problems at the production well and reported that problems at the production well and reported that actual oil recovery was about one-quarter the target value. These studies clearly suggested that poor efficiency of oil recovery results from emulsion stability problems in the low-tension surfactant or micellar processes. Vinatieri presented results of experiments on the stability of crude-oil-in-water emulsions that coo be produced during a surfactant or micellar flood. More recently, we have assessed the rigidity of interfacial films and its relationship to coalescence rate through measurements of interfacial viscosities of crude oils contacted against aqueous solutions containing various concentrations of surfactants and other pertinent chemical additives. Our data clearly indicate that in the absence of a commercial surfactant, interfacial viscosity builds up rapidly, coalescence is inhibited, and the resulting emulsion is quite stable. These phenomena also have been observed by Gladden and Neustadter. Several studies were conducted on the structure of film-forming material at the crude oil/water interface, its effect on emulsion stability, and the role of such films in oil recovery by water or caustic solution displacements. Rigid films were found to reduce the amount of oil recovered. Our studies also have shown that the addition of a commercial surfactant lowered both the interfacial viscosity (ISV) and interfacial tension (IFT) of the crude oil-aqueous solution system. However, the concentration at which both the IFT and ISV are minimized cannot be identified by measuring IFT alone. We have conducted a cinephotomicrographic examination of spontaneous emulsification and a microvisual study of the displacement of residual crude oil by aqueous surfactant solutions in micromodel porous media. SPEJ P. 409


2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


Sign in / Sign up

Export Citation Format

Share Document