Influence of Moisture Sorption on Swelling of Mahogany (Swietenia macrophylla King) Wood

Holzforschung ◽  
2001 ◽  
Vol 55 (6) ◽  
pp. 590-594 ◽  
Author(s):  
R. Arévalo ◽  
R.E. Hernández

Summary Samples of mahogany wood (Swietenia macrophylla King) from Peru were used for moisture sorption tests associated with swelling tests at 25°C. Seven adsorption and five desorption moisture conditions were investigated to study the differences in swelling between adsorption and desorption curves at a given equilibrium moisture content. The results demonstrated that dimensional changes in the tangential direction and in volume were greater for desorption than for adsorption. The presence of these second order effects of moisture sorption in mahogany wood were not detected in the radial direction. Finally, the tangential/radial swelling ratio of this wood was lower in both states of sorption, and was lower in adsorption than in the desorption state.

Holzforschung ◽  
1999 ◽  
Vol 53 (5) ◽  
pp. 553-560 ◽  
Author(s):  
Mari de Meijer ◽  
Holger Militz

Summary The moisture related properties of wood-coating composites have been studied to evaluate the influence of coating penetration on the protection of wood against moisture. Pine sapwood samples were vacuum-impregnated with 7 pigmented and unpigmented coatings, both water and solvent borne. The retention and void filling of the coating have been determined. After drying, the samples were exposed to relative humidities between 33 and 98 % and to liquid water and equilibrium moisture content and dimensional changes were measured. The rate of swelling and moisture sorption has been measured, the latter was also used to calculate diffusion coefficients. The sorption isotherms were analysed by the Hailwood-Horrobin equation. In order to obtain additional information on the hygroscopicity of coatings, similar measurement were made on free coating films. The void filling of wood with coating material has the strongest impact on the uptake of liquid water. A limited reduction was observed for the equilibrium moisture content, the diffusion coefficient during adsorption and the rate of dimensional change. No influence on the equilibrium swelling have been found but the shrinkage during desorption was however often slightly increased for the wood-coating composites. The limited impact of the penetrated coating on moisture related properties can to a large extent be explained by the low void filling after drying (20–60%) and the relatively high moisture sorption and swelling of the coating film itself. In general, it can be concluded that the moisture protection of penetrated coating material is low in comparison to coating applied as a film on the surface of wood.


Author(s):  
Rrahim Sejdiu ◽  
Florit Hoxha ◽  
Bujar Jashari ◽  
Lulzim Idrizi

The paper shows some physical properties of sessile oak obtained in Kosovo regions. In the study are shown: wood shrinkage, specific gravity, shrinkage coefficient for 1% change of moisture content, ratio of shrinkage in tangential and radial direction etc. The amount of volumetric shrinkage of sessile oak is 15.95%, heartwood part has an average shrinkage 15.41% in The shrinkage of sapwood part is 17.56%. Specific gravity at: wet condition: (1.013gr/cm3); 12% (0.853gr/cm3) and 0% (0.826gr/cm3) of moisture content. Specific gravity of heartwood at: wet condition (1.05gr/cm3); 12% (0.88gr/cm3); 0% (0.85gr/cm3). The specific gravity of sapwood at: wet condition (0.91gr/cm3); 12% (0.77gr/cm3); 0% (0.748gr/cm3). The ratio of average shrinkage between tangential and radial cutting direction is 1.71%. This ratio was significantly higher in sapwood than heartwood. Coefficient of shrinkage (changing 1% of moisture content) in the radial direction is 0.00196, and 0.00323 in tangential direction.  


1995 ◽  
Vol 48 (10) ◽  
pp. 684-688 ◽  
Author(s):  
M. Kowal ◽  
S. J. Kowalski

It is possible to observe a significant difference in swelling strains of unstressed and stressed water soaked wood. This paper points out that the swelling strains depend not only on the magnitude of stress in wood but also on the kind of stress state. Our main aim is to investigate the relation between various states of stress and the swelling strains in water soaked wood. Three different states of stress are studied: tension in the radial direction, compression in the tangential direction with respect to the growth rings, and both these stresses acting together (biaxial stress). Some weighty conclusions follow from the investigations. The main one is that, although the mechanical strains alone are negligibly small compared to the free swelling strains, the coupled mechanical-swelling strains, being a function of the stress state and the moisture content, have a great significance in total strains of water soaked wood.


Author(s):  
Olusegun J Oyelade

Insights into the relationship between the air relative humidity (water activity (aw)) and equilibrium moisture content of food materials is essential to maintain good keeping quality and optimize process operation. The adsorption isotherms for cassava flour (lafun) were investigated with the static gravimetric method. Concentrated acid (H2SO4) solutions were used to vary the micro-climate in the study and presented in an easy-to-use template-like format over the range of temperature (27- 40oC) and aw (0.10-0.80) usually experienced in the tropical environment. The experimental data were compared with five widely recommended models in the literature for food sorption isotherms (GAB, modified GAB, modified Oswin, modified Henderson & modified Chung-Pfost). The moisture sorption isotherms were sigmoidal in shape and were influenced by temperature. The modified Oswin model was found to be most adequate whilst the modified GAB appears not suitable to model the adsorption isotherms for lafun.


2020 ◽  
Author(s):  
Johanna Klügl ◽  
Giovanna Di Pietro

Abstract The aim of this study is to gain specific information on the water behaviour of archaeological and ethnographic birch bark. Water is involved in a number of curative and preventive conservation measurements e.g. when re-shaping or drying objects and when defining climate directives for long-term storage. We measured the sorption isotherm of archaeological, ethnographic and contemporary birch bark at different temperatures and analysed the moisture-induced size and shape changes (swelling, shrinkage, deformation) during humidification and drying. The analysis revealed that, compared to other organic materials like wood, the moisture uptake of outer birch bark is modest. This can be attributed to the cell structure and composition: outer birch bark is composed of closed cells made to a large extent of hydrophobic components (suberin, lignin). The equilibrium moisture content is higher if lenticels or inner bark are present. The extent of brittleness and delamination of the sample influences the sorption behaviour: the least brittle and delaminated archaeological birch bark is, the lower the equilibrium moisture content. As the moisture uptake is modest, the related swelling of the outer bark is also modest, but anisotropic being larger in radial direction and smaller in longitudinal and negligible in tangential direction. Water vapour can plasticize birch bark and as birch bark becomes flexible, it bends towards the outside of the bark. This deformation takes place at high moisture contents and the adsorption process is slow. Based on these results recommendations on how best to perform treatments involving moisture and on relative humidity ranges for birch bark objects are provided.


2013 ◽  
Vol 9 (4) ◽  
pp. 499-504 ◽  
Author(s):  
Ocheme Boniface Ocheme ◽  
Chukwuma Charles Ariahu ◽  
Emmanuel Kongo Ingbian

AbstractThe moisture sorption characteristics of dakuwa at 10, 20, 30 and 400°C were studied. The experimental sorption data obtained were applied to BET, GAB, Oswin and Henderson equations to test fitness of the equations to moisture sorption of dakuwa. The sorption isotherms of dakuwa were type III isotherms (J shaped), and the equilibrium moisture content increased with increasing water activity but decreased with increasing temperature. The BET and GAB monolayer moisture contents all decreased with increasing temperature. For adsorption, the BET monolayer was higher (3.163–4.158 g/100 g solid) than that of GAB (2.931–3.728 g/100 g solid), but for desorption, the GAB monolayer (4.792–7.741 g/100 g solid) was higher than that of BET (3.962–4.480 g/100 g solid). Evaluation of goodness of fit of models revealed that moisture sorption of dakuwa was best modelled by GAB equation.


Author(s):  
Zhao Yang ◽  
Enlong Zhu ◽  
Zongsheng Zhu

Abstract Moisture sorption isotherms of green soybean seeds were determined by static gravimetric method and water activity ranging from 0.11to 0.94 at 20, 30 and 40°C. The optimal sorption model of green soybean was determined by using nonlinear regression method. Modified BET multilayer sorption theory model parameters at different temperatures were calculated, isosteric sorption heat was derived by the water activity sorption isosteric model. Results indicated that sorption isotherms were belong to type III behaviour, a notable hysteresis effect was observed, Green soybean monolayer saturated sorption capacity was greater in desorption process than that of adsorption. The monolayer saturated sorption capacity decreased with increasing temperature, while the number of multilayer had a reverse trend with the monolayer saturated sorption capacity, the optimal sorption isotherm model for green soybean is Halsey model, The thermodynamic parameters including net isosteric heat of adsorption and desorption calculated at 40°C were 105.2-1865.4 kJ/kg and 111.62-1939.0 kJ/kg with equilibrium moisture content between 5% and 32% (d.b.), respectively. The net isosteric heat of sorption decreased with increasing equilibrium moisture content.


Holzforschung ◽  
2016 ◽  
Vol 70 (12) ◽  
pp. 1191-1199 ◽  
Author(s):  
Tiantian Yang ◽  
Erni Ma ◽  
Jianhui Zhang

Abstract Poplar (Populus euramericana Cv.) specimens, 20 mm in radial (r) and tangential (t) directions with thicknesses of 4 mm and 10 mm along the longitudinal direction, were subjected to cyclic environmental conditions, in the course of which the relative humidity (RH) changed sinusoidally between 75% and 45% at 20°C (condition A), or the temperature (T) was changed sinusoidally within 5–35°C at 60% RH (condition B). Moisture content (MC), as well as the t- and r-dimensional changes were measured as a response to the dynamic environmental conditions. The measured data also changed sinusoidally but they lagged behind the triggering original RH or T data. This effect was much higher under condition A than under condition B. The observed equivalent RH and T changes at different ΔMCs or Δts served for comparison of the responses to RH and T, and the former were less pronounced than the latter. MC and t-dimensional changes per unit change of RH were greater than those per unit change of T but still lower than static values. In summary, the effects of dynamic RH change are larger than those of T, especially concerning MC responses compared to dimensional changes.


Author(s):  
Maria Carolina Soares Pereira ◽  
Jiří Štencl ◽  
Bohumíra Janštová ◽  
Václav Vlášek

Moisture sorption isotherms of Dutch type semi-hard cheese edge in the temperature range of 10–25 ºC and water activity (Aw) from 0.11 to 0.98 were determined using manometric method. The sorption curves had a sigmoid shape. The equilibrium moisture content (EMC) of cheese samples increased with an increase in Aw at a constant temperature both for water adsorption and desorption. An increase in temperature caused an increase in Aw for the same moisture content (MC) and, if Aw was kept constant, an increase in temperature caused a decrease in the amount of absorbed water. Critical values of equilibrium moisture content, corresponding to the Aw = 0.6, were between 11 % MC (w.b.) and 17 % MC (w.b.) both for moisture adsorption and desorption. Values of sorption heat were calculated from moisture sorption isotherms by applying the Clausius-Clapeyron equation. Values of the heat of desorption are higher than those of adsorption and the difference increases with the MC decrease. Heat of sorption decreased from 48.5 kJ/mol (~5.5 % MC w.b.) to the values approaching the heat of vaporization of pure water, free MC. The critical value for free water evaporation is about w = 27 % (w.b.) for the range of temperature 10–25 ºC.


Author(s):  
Zdeňka Havířová ◽  
Pavel Kubů

One of the natural properties of wood and wood-based materials is their soaking capacity (hy­gro­sco­pi­ci­ty). The moisture content of wood and building constructions of wood and wood based materials significantly influences the service life and reliability of these constructions and buildings. The equilibrium weight moisture content of built-in wood corresponding to temperature/moisture conditions inside the cladding has therefore a decisive influence on the basic requirements placed on building constructions. The wood in wooden frame cladding changes its moisture content depending on temperature and moisture conditions of the environment it is built into. The water vapor condensation doesn’t necessarily have to occur right in the wooden framework of the cladding for the equilibrium moisture content to rise over the level permissible for the reliable function of a given construction. In spite of the fact that the common heat-technical assessment cannot be considered fully capable of detecting the effects of these factors on the functional reliability of wood-based constructions and buildings, an extension has been proposed of the present method of design an assessment of building constructions according to the ČSN 73 0540 standard regarding the interpretation of equilibrium moisture content in relation to the temperature/moisture conditions and their time behavior inside a construction.


Sign in / Sign up

Export Citation Format

Share Document