Significance of the heating rate on the physical properties of carbonized maple wood

Holzforschung ◽  
2008 ◽  
Vol 62 (5) ◽  
Author(s):  
Xinfeng Xie ◽  
Barry Goodell ◽  
Yuhui Qian ◽  
Michael Peterson ◽  
Jody Jellison

Abstract Effects of the heating rate on the physical properties of carbonized wood were investigated by comparing the dimensional shrinkage, electrical resistivity, Young's modulus, and the evolution of turbostratic crystallites in maple hardwood samples carbonized at 600°C, 800°C, and 1000°C under heating regimes of 3°C h-1 and 60°C h-1. Important carbonized wood properties that developed at high temperature and high heating rates could also be produced at slow heating rates and lower temperatures. Furthermore, slow heating rates promoted the formation and growth of graphene sheets in turbostratic crystallites, which had a significant influence on the electrical resistivity and Young's modulus of the carbonized wood. The results indicate that the graphene sheets of turbostratic crystallites formed during wood carbonization were arranged parallel to the axial direction of wood cells and at an angle to the circumference of wood cells in the cross-sectional plane. With regard to the production of carbon products, a decrease in the heating rate may be beneficial for char properties and the prevention of crack production during manufacture of large monolithic carbon specimens from wood and wood-based materials.

2020 ◽  
Vol 6 (1) ◽  
pp. 1-6
Author(s):  
Irina A. Portnykh ◽  
Aleksandr V. Kozlov ◽  
Valery L. Panchenko ◽  
Vyacheslav S. Shikhalev

The microstructures and physical properties of the austenitic Cr18Ni9-grade steel after 22 and 33 years of operation as part of the reactor internals were tested for assessing the conditions of the BN-600 reactor non-replaceable components (internals) and the potential of their subsequent use in predicting the reactor ultimate life. The paper presents histograms of the porosity distribution depending on the void size, in samples taken from portions that were subjected to neutron irradiation with displacement rates ranging from 1.0×10–9 to 4.3×10–8 dpa/s at temperatures from 370 to 440 °C. The elasticity characteristics were measured by resonance-type ultrasonic technique for the samples taken from the same portions of material. It was demonstrated that swelling calculated using the histograms of the porosity distribution depending on the void size has the maximum value at ~415 °C and after 33 years of irradiation reaches values of ~3%. Long-term variations of Young’s modulus demonstrate non-monotonous dependence on the damage dose. The maximum relative variation of Young’s modulus after 22 and 33 years of operation does not exceed 2% and 6%, respectively, of the values corresponding to the initial state. It was shown that along with the irradiation-induced swelling the changes in the physical properties are also affected in the process of irradiation by other structural changes and, in particular, by the formation of secondary phases. As shown by the results of the studies, operation of the BN-600 reactor internals made of Cr18Ni9-grade steel can be extended beyond 33 years of service. The comparison of the results obtained for the material after 22 and 33 years of operation contains information required for describing subsequent changes of the structure and properties of the Cr18Ni9 internals. The obtained results can be used for forecasting the reactor ultimate life within the framework of existing and developed models.


2021 ◽  
Author(s):  
Hui Cao ◽  
Wenke Chen ◽  
Zhiyuan Rui ◽  
Changfeng Yan

Abstract Metal nanomaterials exhibit excellent mechanical properties compared with corresponding bulk materials and have potential applications in various areas. Despite a number of studies of the size effect on Cu nanowires mechanical properties with square cross-sectional, investigations of them in rectangular cross-sectional with various sizes at constant volume are rare, and lack of multifactor coupling effect on mechanical properties and quantitative investigation. In this work, the dependence of mechanical properties and deformation mechanisms of Cu nanowires/nanoplates under tension on cross-sessional area, aspect ratio of cross-sectional coupled with orientation were investigated using molecular dynamics simulations and the semi-empirical expressions related to mechanical properties were proposed. The simulation results show that the Young’s modulus and the yield stress sharply increase with the aspect ratio except for the <110>{110}{001} Cu nanowires/nanoplates at the same cross-sectional area. And the Young’s modulus increases while the yield stress decreases with the cross-sectional area of Cu nanowires. However, both of them increase with the cross-sectional area of Cu nanoplates. Besides, the Young’s modulus increases with the cross-sectional area at all the orientations. The yield stress shows a mildly downward trend except for the <111> Cu nanowires with increased cross-sectional area. For the Cu nanowires with a small cross-sectional area, the surface force increases with the aspect ratio. In contrast, it decreases with the aspect ratio increase at a large cross-sectional area. At the cross-sectional area of 13.068 nm2, the surface force decreases with the aspect ratio of the <110> Cu nanowires while it increases at other orientations. The surface force is a linearly decreasing function of the cross-sectional area at different orientations. Quantitative studies show that Young’s modulus and yield stress to the aspect ratio of the Cu nanowires satisfy exponent relationship. In addition, the main deformation mechanism of Cu nanowires is the nucleation and propagation of partial dislocations while it is the twinning-dominated reorientation for Cu nanoplates.


2019 ◽  
Vol 814 ◽  
pp. 12-18 ◽  
Author(s):  
Sivakumar Sivanesan ◽  
Teow Hsien Loong ◽  
Satesh Namasivayam ◽  
Mohammad Hosseini Fouladi

Alumina-Y-TZP composites between 0 to 25 vol% Y-TZP content produced via conventional two-stage sintering with T1 ranging between 1400°C and 1550°C, heating rate of 20°C/min, followed by T2 of 1350°C and 12 hours dwelling time. The microstructure, density, Vickers hardness (HV), Young’s modulus (E) and fracture toughness (KIC) of the sintered samples were then evaluated. It is observed that all samples up to 10 vol% Y-TZP achieved > 98% T.D. as the T1 increases. Samples with Y-TZP content above 10 vol% resulted in a significant decrease in density and hardness. Samples with ≤ 10 vol% Y-TZP sintered at T1 of 1450°C was able to achieve density > 98% T.D., Vickers hardness > 18 GPa and Young’s modulus > 380 GPa and fracture toughness > 6 MPam1/2 when compared to pure Al2O3 ceramics.


2014 ◽  
Vol 1025-1026 ◽  
pp. 445-450 ◽  
Author(s):  
Ashwary Pande ◽  
Salil Sainis ◽  
Santhosh Rajaraman ◽  
Geetha Manivasagam ◽  
M. Nageswara Rao

A comparison between slow heating to aging temperature and direct charging at aging temperature on the microstructure and mechanical properties obtained after the aging was established for the metastable beta (β) titanium alloy Ti-15V-3Cr-3Al-3Sn. The alloy was subjected to two single aging (SA) and two duplex aging (DA) conditions, with two heating rates to aging temperature: (i) low heating rate of 5 oC/min (ii) direct charging into a furnace heated to aging temperature. The microstructure analysis was carried out using Field Emission Scanning Electron Microscopy. Mechanical Testing was carried to evaluate Ultimate Tensile Strength (UTS), 0.2% Yield Strength (YS), % Elongation (%El.), % Reduction in area (%RA) and hardness. In the case of SA samples aged at 500 °C for 8 h and 500 °C for 10 h, heating rate of 5 °C/min to aging temperature resulted in a finer microstructure but did not help in achieving better strength-ductility combination compared to direct charging. Lower rate of heating allows enough dwell time in the temperature range 250-300 oC for pre-precipitation reaction to occur which aids in fine scale precipitation of alpha phase during aging. In the case of DA samples aged at 250 oC for 24 h followed by 500 oC for 8 h and 300 oC for 10 h followed by 500 oC for 10 h, no tangible difference between lower rate of heating and direct charging was observed in mechanical properties or microstructure. This is believed to be due to the pre-aging steps 250 oC/24 h or 300 oC/10h in the two DA treatments, which create finely distributed precursors thereby leaving no scope for the heating rate to play a role.


RSC Advances ◽  
2012 ◽  
Vol 2 (24) ◽  
pp. 9124 ◽  
Author(s):  
Nuannuan Jing ◽  
Qingzhong Xue ◽  
Cuicui Ling ◽  
Meixia Shan ◽  
Teng Zhang ◽  
...  

Author(s):  
Khalid I. Alzebdeh

The mechanical behaviour of a single-layer nanostructured graphene sheet is investigated using an atomistic-based continuum model. This is achieved by equating the stored energy in a representative unit cell for a graphene sheet at atomistic scale to the strain energy of an equivalent continuum medium under prescribed boundary conditions. Proper displacement-controlled (essential) boundary conditions which generate a uniform strain field in the unit cell model are applied to calculate one elastic modulus at a time. Three atomistic finite element models are adopted with an assumption that force interactions among carbon atoms can be modeled by either spring-like or beam elements. Thus, elastic moduli for graphene structure are determined based on the proposed modeling approach. Then, effective Young’s modulus and Poisson’s ratio are extracted from the set of calculated elastic moduli. Results of Young’s modulus obtained by employing the different atomistic models show a good agreement with the published theoretical and numerical predictions. However, Poisson’s ratio exhibits sensitivity to the considered atomistic model. This observation is supported by a significant variation in estimates as can be found in the literature. Furthermore, isotropic behaviour of in-plane graphene sheets was validated based on current modeling.


Sign in / Sign up

Export Citation Format

Share Document