Ageing of modified wood. Part 1: Wetting properties of acetylated, furfurylated, and thermally modified wood

Holzforschung ◽  
2010 ◽  
Vol 64 (3) ◽  
Author(s):  
Lars Elof Bryne ◽  
Magnus E.P. Wålinder

Abstract The main objective of this work was to apply contact angle analysis to predict work of adhesion (W a ) between some modified wood materials and certain thermoplastics and adhesives. Wetting properties, i.e., contact angles, were measured by the Wilhelmy method on both freshly prepared and aged veneer samples of unmodified and acetylated Scots pine, furfurylated radiata pine, and heat treated Norway spruce. The sessile drop method was used to measure contact angles on a phenol resorcinol formaldehyde, an emulsion polymer isocyanate, and a one-component polyurethane adhesive. Contact angle data were also collected from the literature on polyethylene, polyvinyl chloride, polymethyl methacrylate, polystyrene, and Nylon 6. Contact angle analysis based on the Chang-Qin-Chen model was then applied to determine so-called acid-base interaction parameters and W a between the wood samples and the selected thermoplastics and adhesives. Results show that the ageing process led to an increased hydrophobic character of unmodified, heat treated, and furfurylated wood samples. The freshly prepared acetylated wood samples had a pronounced hydrophobic character which remained approximately constant after ageing. The predicted W a between the wood and the adhesives was considerably higher than that between the wood and the thermoplastics. Furthermore, the predicted W a between the acetylated wood and both the thermoplastics and water was approximately unchanged when comparing the fresh and aged samples. In contrast, the ageing of all other wood samples resulted in a dramatic decrease of the wood-water W a and a moderate decrease of the wood-thermoplastics W a . The wood-adhesives W a , however, was unchanged for the unmodified and furfurylated wood when comparing the fresh and aged samples and even increased for heat treated and acetylated wood samples.

MRS Advances ◽  
2018 ◽  
Vol 3 (57-58) ◽  
pp. 3379-3390 ◽  
Author(s):  
Saaketh R. Narayan ◽  
Jack M. Day ◽  
Harshini L. Thinakaran ◽  
Nicole Herbots ◽  
Michelle E. Bertram ◽  
...  

ABSTRACTThe effects of crystal orientation and doping on the surface energy, γT, of native oxides of Si(100) and Si(111) are measured via Three Liquid Contact Angle Analysis (3LCAA) to extract γT, while Ion Beam Analysis (IBA) is used to detect Oxygen. During 3LCAA, contact angles for three liquids are measured with photographs via the “Drop and Reflection Operative Program (DROP™). DROP™ removes subjectivity in image analysis, and yields reproducible contact angles within < ±1°. Unlike to the Sessile Drop Method, DROP can yield relative errors < 3% on sets of 20-30 drops. Native oxides on 5 x 1013 B/cm3 p- doped Si(100) wafers, as received in sealed, 25 wafer teflon boats continuously stored in Class 100/ISO 5 conditions at 24.5°C in 25% controlled humidity, are found to be hydrophilic. Their γT, 52.5 ± 1.5 mJ/m2, is reproducible between four boats from three sources, and 9% greater than γT of native oxides on n- doped Si(111), which averages 48.1 ± 1.6 mJ/m2 on four 4” Si(111) wafers. IBA combining 16O nuclear resonance with channeling detects 30% more oxygen on native oxides of Si(111) than Si(100). While γT should increase on thinner, more defective oxides, Lifshitz-Van der Waals interactions γLW on native oxides of Si(100) remain at 36 ± 0.4 mJ/m2, equal to γLW on Si(111), 36 ± 0.6 mJ/m2, since γLW arises from the same SiO2 molecules. Native oxides on 4.5 x 1018 B/cm3 p+ doped Si(100) yield a γT of 39 ± 1 mJ/m2, as they are thicker per IBA. In summary, 3LCAA and IBA can detect reproducibly and accurately, within a few %, changes in the surface energy of native oxides due to thickness and surface composition arising from doping or crystal structure, if conducted in well controlled clean room conditions for measurements and storage.


2019 ◽  
Vol 9 (17) ◽  
pp. 3445 ◽  
Author(s):  
Anna Zdziennicka ◽  
Katarzyna Szymczyk ◽  
Bronisław Jańczuk ◽  
Rafał Longwic ◽  
Przemysław Sander

Oleic, linoleic, and linolenic acids are the main components of canola oil and their physiochemical properties decide on the use of canola oil as fuel for diesel engines. Therefore, the measurements of the surface tension of oleic, linoleic, and linolenic acids being the components of the canola oil, as well as their contact angles on the polytetrafluoroethylene (PTFE), poly(methyl methacrylate) (PMMA), and engine valve, were made. Additionally, the surface tension and contact angle on PTFE, PMMA, and the engine valve of the oleic acid and n-hexane mixtures were measured. On the basis of the obtained results, the components and parameters of oleic, linoleic, and linolenic acids’ surface tension were determined and compared to those of the canola oil. Next, applying the components and parameters of these acids, their adhesion work to PTFE, PMMA, and the engine valve was calculated by means of various methods.


2018 ◽  
Vol 762 ◽  
pp. 176-181
Author(s):  
Jevgenijs Jaunslavietis ◽  
Galia Shulga ◽  
Jurijs Ozolins ◽  
Brigita Neiberte ◽  
Anrijs Verovkins ◽  
...  

In this study, hydrophobic-hydrophilic characteristics, including contact angle and moisture sorption of a modified wood filler and the wood-polymer composites (WPC) containing it was investigated. The wood filler obtained from aspen sawdust was modified by mild acid hydrolysis and by ammoxidation. Contact angles of the wood particles and the WPC samples were measured with Kruss K100M using the Washburn and Wilhelmy methods, respectively. Work of adhesion was calculated using Young-Dupre equation. Surface free energy as well as its dispersive and polar parts were found using Owens-Wendt-Rabel-Kaelble approach. It was found that the hydrolysis and the ammoxidation led to decrease of the hemicelluloses content in the lignocellulosic matrix. Beside this, the ammoxidation favours the formation of amide bonds in the ammoxidised particles. These changes enhanced the contact angles, decreased the work of adhesion, and decreased surface free energy of the WPC samples filled with the modified particles in comparison with the WPC sample that contained the unmodified ones. The treatment of the wood particles decreased the wettability towards water, but increased it towards recycled polypropylene. This positively effects mechanical properties of the samples.


2004 ◽  
Vol 11 (01) ◽  
pp. 7-13 ◽  
Author(s):  
XINPING ZHANG ◽  
SIRONG YU ◽  
ZHENMING HE ◽  
YAOXIN MIAO

This paper focuses on effects of roughness on wettability. According to Wenzel's equation, the transition of theoretical wetting contact angles is 90°, whereas many experimental results have indicated that such a transition takes place at contact angles smaller than 90°. A new model of wetting on roughness surface is established in this paper. The model indicates that the influencing factors of wetting on roughness surface include not only equilibrium contact angle θ0 and surface roughness, but also the system of liquids and solid substrates. There is a corresponding transition angle for every surface roughness, and the transition angle is lower than 90°. Surface roughness is propitious to improve the contact angle only when θ0 is lower than the transition angle. The effect of surface roughness on the contact angle increases with the increase of rE. To engineer the surface with different roughnesses, a Ti test sample is polished with sandpaper with abrasive number 350, 500, 1000 and 2000; the contact angles of water on Ti are measured by the sessile drop method. The results of the theoretical analysis agree with experimental ones.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Limin Zhang ◽  
Ning Li ◽  
Hui Xing ◽  
Rong Zhang ◽  
Kaikai Song

The effect of direct current (DC) on the wetting behavior of Cu substrate by liquid Ga–25In–13Sn alloy at room temperature is investigated using a sessile drop method. It is found that there is a critical value for current intensity, below which the decrease of contact angle with increasing current intensity is approximately linear and above which contact angle tends to a stable value from drop shape. Current polarity is a negligible factor in the observed trend. Additionally, the observed change in contact angles is translated into the corresponding change in solid-liquid interfacial tension using the equation of state for liquid interfacial tensions. The solid-liquid interfacial tension decreases under DC. DC-induced promotion of solute diffusion coefficient is likely to play an important role in determining the wettability and solid-liquid interfacial tension under DC.


2014 ◽  
Vol 941-944 ◽  
pp. 102-107 ◽  
Author(s):  
Wei Ji Mao ◽  
Hiroki Sannomiya ◽  
Nobuya Shinozaki ◽  
Toshifumi Ogawa

The wetting behavior of molten Cu-Ti alloys with titanium content of 10mass%, 20mass% and 30mass% on the Yttria Partially-Stabilized Zirconia (Y-PSZ) substrates was investigated at 1273K using the sessile drop method. The wettability improved with increasing the titanium content of the alloy. The stabilized contact angles of Cu-10mass%Ti, Cu-20mass%Ti and Cu-30mass%Ti alloys on the Y-PSZ substrate were measured to be 69°, 47°and 30°, respectively. The surface tension of the molten Cu-Ti alloys and the work of adhesion of alloy/substrate interface increased with increasing the titanium content. A larger work of adhesion attributes to firmer bonding between the molten Cu-Ti alloy and the Y-PSZ substrate, and can greatly improve the wettability.


2003 ◽  
Vol 36 (10) ◽  
pp. 3689-3694 ◽  
Author(s):  
Janelle M. Uilk ◽  
Ann E. Mera ◽  
Robert B. Fox ◽  
Kenneth J. Wynne

2016 ◽  
Vol 697 ◽  
pp. 481-484 ◽  
Author(s):  
San Tuan Zhao ◽  
Xiang Zhao Zhang ◽  
Gui Wu Liu ◽  
Hong Yan Xia ◽  
Zhong Qi Shi ◽  
...  

The Mo-Ni (Co)-Si metallizing coatings on the SiC ceramic substrate were prepared by vacuum cladding process. The wetting and spreading of molten Al on coated SiC ceramic substrates at 900 oC were investigated by the sessile drop technique, and the interfacial behavior of the Al/coated SiC wetting couples was analyzed. The experimental results showed that the final contact angle of Al/M20NiSi coated SiC was close to 0o. With the increase of Mo content in the Mo-Ni-Si coating, the shape of the sessile drop became very irregular due to the strong interactions between the Al drop and the coating, so it was unable to precisely characterize the contact angles of Al/Mo30NiSi and Al/Mo40NiSi systems. The final contact angle of Al/Mo10CoSi coated SiC system was also close to 0o, however, the final contact angle of Al/Mo20CoSi coated SiC system climbed to ~42o with the Mo content increasing from 10 at.% to 20 at.%. The significant increase of contact angle may be caused by the accumulation of Mo near the triple line which can impede the spreading of Al drop.


1985 ◽  
Vol 63 (8) ◽  
pp. 2339-2340 ◽  
Author(s):  
R. N. O'brien ◽  
Paul Saville

Small contact angles, such as water on glass, have been shown to be measurable interferometrically using fringes of equal thickness after the fashion of Newton's rings. The measured angle for the water on glass system was 0.049 ± 0.006 degrees of arc.


Sign in / Sign up

Export Citation Format

Share Document