scholarly journals Effect of Direct Current on Solid-Liquid Interfacial Tension and Wetting Behavior of Ga–In–Sn Alloy Melt on Cu Substrate

2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Limin Zhang ◽  
Ning Li ◽  
Hui Xing ◽  
Rong Zhang ◽  
Kaikai Song

The effect of direct current (DC) on the wetting behavior of Cu substrate by liquid Ga–25In–13Sn alloy at room temperature is investigated using a sessile drop method. It is found that there is a critical value for current intensity, below which the decrease of contact angle with increasing current intensity is approximately linear and above which contact angle tends to a stable value from drop shape. Current polarity is a negligible factor in the observed trend. Additionally, the observed change in contact angles is translated into the corresponding change in solid-liquid interfacial tension using the equation of state for liquid interfacial tensions. The solid-liquid interfacial tension decreases under DC. DC-induced promotion of solute diffusion coefficient is likely to play an important role in determining the wettability and solid-liquid interfacial tension under DC.

Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 787 ◽  
Author(s):  
Federico Veronesi ◽  
Giulio Boveri ◽  
Mariarosa Raimondo

The search for surfaces with non-wetting behavior towards water and low-surface tension liquids affects a wide range of industries. Surface wetting is regulated by morphological and chemical features interacting with liquid phases under different ambient conditions. Most of the approaches to the fabrication of liquid-repellent surfaces are inspired by living organisms and require the fabrication of hierarchically organized structures, coupled with low surface energy chemical composition. This paper deals with the design of amphiphobic metals (AM) and alloys by deposition of nano-oxides suspensions in alcoholic or aqueous media, coupled with perfluorinated compounds and optional infused lubricant liquids resulting in, respectively, solid–liquid–air and solid–liquid–liquid working interfaces. Nanostructured organic/inorganic hybrid coatings with contact angles against water above 170°, contact angle with n-hexadecane (surface tension γ = 27 mN/m at 20 °C) in the 140–150° range and contact angle hysteresis lower than 5° have been produced. A full characterization of surface chemistry has been undertaken by X-ray photoelectron spectroscopy (XPS) analyses, while field-emission scanning electron microscope (FE-SEM) observations allowed the estimation of coatings thicknesses (300–400 nm) and their morphological features. The durability of fabricated amphiphobic surfaces was also assessed with a wide range of tests that showed their remarkable resistance to chemically aggressive environments, mechanical stresses and ultraviolet (UV) radiation. Moreover, this work analyzes the behavior of amphiphobic surfaces in terms of anti-soiling, snow-repellent and friction-reduction properties—all originated from their non-wetting behavior. The achieved results make AM materials viable solutions to be applied in different sectors answering several and pressing technical needs.


2013 ◽  
Vol 20 (03n04) ◽  
pp. 1350036 ◽  
Author(s):  
WANG XU ◽  
WANG CHENCHONG ◽  
CHEN GUOQIN ◽  
YANG WENSHU ◽  
ZHANG ZHICHAO

In present work, the wetting behavior of carbon fiber and Al – Mg alloys (up to 17 wt.%) from 700°C to 1000°C was investigated by sessile drop method. Below 900°C, the contact angles decreased slightly with increase of temperature regardless of Mg amount. However, the contact angles decreased sharply at elevated temperature (above 900°C). Moreover, below 900°C, the contact angles decreased slightly with holding time, and significant decrease of contact angle with increase of holding time was found above 1000°C. All contact angle-holding time curves at 1000°C demonstrated three kinetic stages. It is observed that the contact angles decreased with Mg amount regardless of wetting temperature. The addition of Mg element will inhabit the nucleation and growth of Al 4 C 3 phase, which is unfavorable to the wetting behavior. However, the addition of Mg element will also decrease the surface energy, which demonstrates dominant effect and leads to the decrease of contact angles.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3962
Author(s):  
Claudia Voigt ◽  
Jana Hubálková ◽  
Tilo Zienert ◽  
Beate Fankhänel ◽  
Michael Stelter ◽  
...  

The wetting behavior was measured for Al2O3-C in contact with AlSi7Mg with a conventional sessile drop test (vacuum, 950 °C and 180 min) and a sessile drop test with a capillary purification unit (vacuum, 730 °C and 30 min). The conventional test yielded contact angles of around 92°, whereas the sessile drop measurement with capillary purification showed a strongly non-wetting behavior with a determined apparent contact angle of the rolling drop of 157°. Filtration tests, which were repeated twice, showed that the Al2O3-C filter possessed a better filtration behavior than the Al2O3 reference filter. For both filtration trials, the PoDFA (porous disc filtration analysis) index of the Al2O3-C filter sample was equal to half of the PoDFA index of the Al2O3 reference filter sample, indicating a significantly improved filtration performance when using Al2O3-C filter. Notable is the observation of a newly formed layer between the aluminum and the Al2O3-C coating. The layer possessed a thickness between 10 µm up to 50 µm and consisted of Al, C, and O, however, with different ratios than the original Al2O3-C coating. Thermodynamic calculations based on parameters of the wetting and filtration trials underline the possible formation of an Al4O4C-layer.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 938 ◽  
Author(s):  
Georg Schnell ◽  
Christopher Jagow ◽  
Armin Springer ◽  
Marcus Frank ◽  
Hermann Seitz

This study investigated the wetting behavior of Ti6Al4V surfaces that were groove-structured by means of femtosecond laser irradiation. The material was treated under ambient air conditions by use of a laser wavelength of 1030 nm and a pulse duration of 300 fs. Highly accurate structures with a gap width of 20 µm, a gap depth of 10 µm, and varying strut widths (1–300 µm) were generated and the contact angles in parallel and perpendicular direction were determined using sessile drop method with ultrapure water 1, 8, and 15 days after irradiation. All deterministic surfaces exhibited a pronounced contact angle change over time. The structures showed a strong anisotropic wetting behavior with a maximum contact angle aspect ratio of 2.47 at a strut width of 40 µm and a maximum difference between the parallel and perpendicular contact angle of 47.9° after 1 day.


2006 ◽  
Vol 21 (12) ◽  
pp. 3222-3233 ◽  
Author(s):  
Laurent Gremillard ◽  
Eduardo Saiz ◽  
Velimir R. Radmilovic ◽  
Antoni P. Tomsia

The wetting of Sn3Ag-based alloys on Al2O3 has been studied using the sessile-drop configuration. Small additions of Ti decrease the contact angle of Sn3Ag alloys on alumina from 115° to 23°. Adsorption of Ti-species at the solid–liquid interface prior to reaction is the driving force for the observed decrease in contact angle, and the spreading kinetics is controlled by the kinetics of Ti dissolution into the molten alloy. The addition of Ti increases the transport rates at the solid–liquid interface, resulting in the formation of triple-line ridges that pin the liquid front and promote a wide variability in the final contact angles.


Biomimetics ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 38
Author(s):  
Quentin Legrand ◽  
Stephane Benayoun ◽  
Stephane Valette

This investigation of morphology-wetting links was performed using a biomimetic approach. Three natural leaves’ surfaces were studied: two bamboo varieties and Ginkgo Biloba. Multiscale surface topographies were analyzed by SEM observations, FFT, and Gaussian filtering. A PDMS replicating protocol of natural surfaces was proposed in order to study the purely morphological contribution to wetting. High static contact angles, close to 135∘, were measured on PDMS replicated surfaces. Compared to flat PDMS, the increase in static contact angle due to purely morphological contribution was around 20∘. Such an increase in contact angle was obtained despite loss of the nanometric scale during the replication process. Moreover, a significant decrease of the hysteresis contact angle was measured on PDMS replicas. The value of the contact angle hysteresis moved from 40∘ for flat PDMS to less than 10∘ for textured replicated surfaces. The wetting behavior of multiscale textured surfaces was then studied in the frame of the Wenzel and Cassie–Baxter models. Whereas the classical laws made it possible to describe the wetting behavior of the ginkgo biloba replications, a hierarchical model was developed to depict the wetting behavior of both bamboo species.


2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


Author(s):  
Neeharika Anantharaju ◽  
Mahesh Panchagnula ◽  
Wayne Kimsey ◽  
Sudhakar Neti ◽  
Svetlana Tatic-Lucic

The wettability of silicon surface hydrophobized using silanization reagents was studied. The advancing and receding contact angles were measured with the captive needle approach. In this approach, a drop under study was held on the hydrophobized surface with a fine needle immersed in it. The asymptotic advancing and receding angles were obtained by incrementally increasing the volume added and removed, respectively, until no change in angles was observed. The values were compared with the previously published results. Further, the wetting behavior of water droplets on periodically structured hydrophobic surfaces was investigated. The surfaces were prepared with the wet etching process and contain posts and holes of different sizes and void fractions. The surface geometry brought up a scope to study the Wenzel (filling of surface grooves) and Cassie (non filling of the surface grooves) theories and effects of surface geometry and roughness on the contact angle. Experimental data point to an anomalous behavior where the data does not obey either Wenzel or Cassie type phenomenology. This behavior is explained by an understanding of the contact line topography. The effect of contact line topography on the contact angle was thus parametrically studied. It was also inferred that, the contact angle increased with the increase in void fraction. The observations may serve as guidelines in designing surfaces with the desired wetting behavior.


Author(s):  
Sergey Bublik ◽  
Sarina Bao ◽  
Merete Tangstad ◽  
Kristian Etienne Einarsrud

AbstractThe present study has investigated the influence of sulfur content in synthetic FeMn and SiMn from 0 to 1.00 wt pct on interfacial properties between these ferroalloys and slags. The effect of experimental parameters such as temperature and holding time was evaluated. Interfacial interaction between ferroalloys and slags was characterized by interfacial tension and apparent contact angle between metal and slag, measured based on the Young–Laplace equation and an inverse modelling approach developed in OpenFOAM. The results show that sulfur has a significant influence on both interfacial tension and apparent contact angle, decreasing both values and promoting the formation of a metal-slag mixture. Despite the fact that sulfur was added only to the ferroalloys, most of sulfur is distributed into slag after reactions with the metal phase. Increasing the maximum experimental temperature in the sessile drop furnace also resulted in a decrease of both interfacial properties, resulting in higher mass transfer rates and intensive reactions between metal and slag. The effect of holding time demonstrated that after reaching equilibrium in FeMn-slag and SiMn-slag systems (both with and without sulfur), interfacial tension and apparent contact angle remain constant.


Author(s):  
H. Samara ◽  
T. V. Ostrowski ◽  
F. Ayad Abdulkareem ◽  
E. Padmanabhan ◽  
P. Jaeger

AbstractShales are mostly unexploited energy resources. However, the extraction and production of their hydrocarbons require innovative methods. Applications involving carbon dioxide in shales could combine its potential use in oil recovery with its storage in view of its impact on global climate. The success of these approaches highly depends on various mechanisms taking place in the rock pores simultaneously. In this work, properties governing these mechanisms are presented at technically relevant conditions. The pendant and sessile drop methods are utilized to measure interfacial tension and wettability, respectively. The gravimetric method is used to quantify CO2 adsorption capacity of shale and gas adsorption kinetics is evaluated to determine diffusion coefficients. It is found that interfacial properties are strongly affected by the operating pressure. The oil-CO2 interfacial tension shows a decrease from approx. 21 mN/m at 0.1 MPa to around 3 mN/m at 20 MPa. A similar trend is observed in brine-CO2 systems. The diffusion coefficient is observed to slightly increase with pressure at supercritical conditions. Finally, the contact angle is found to be directly related to the gas adsorption at the rock surface: Up to 3.8 wt% of CO2 is adsorbed on the shale surface at 20 MPa and 60 °C where a maximum in contact angle is also found. To the best of the author’s knowledge, the affinity of calcite-rich surfaces toward CO2 adsorption is linked experimentally to the wetting behavior for the first time. The results are discussed in terms of CO2 storage scenarios occurring optimally at 20 MPa.


Sign in / Sign up

Export Citation Format

Share Document