scholarly journals Aspect of the degradation and adsorption kinetics of atrazine and metolachlor in andisol soil

2017 ◽  
Vol 10 (1) ◽  
pp. 1-14 ◽  
Author(s):  
P. Jaikaew ◽  
F. Malhat ◽  
J. Boulange ◽  
H. Watanabe

SummaryThe degradation kinetics and sorption characteristics of atrazine and metolachlor in Japanese andisol soil were evaluated using laboratory incubation of soil samples. The water content of the soil was set to field capacity while three different temperatures (5, 25 and 35°C) were considered for the experiment. First order model fitted the degradation kinetics of both herbicides under the investigated temperature range with half-lives ranging from 19.2 to 46.9 days for atrazine and from 23.4 to 66.9 days for metolachlor, respectively. The activation energies (Ea) of atrazine and metolachlor calculated using Arhenius equation were 21.47 and 23.91 kJ mol−1, respectively. The soil sorption study was conducted using the batch equilibrium process. The adsorption behaviors of atrazine and metolachlor were investigated using linear, Freundlich and Langmuir isotherms although the linear and Freundlich isotherms gave relatively high correlation coefficient (R2) and very low standard error of estimate (SEE). The free energy (ΔG°) values were in the range −30.6 to −32.0 kJ/mol, and −32.1 to −41.5 kJ/mol for atrazine and metolachlor, respectively. Thermodynamic parameters indicated that the adsorption is spontaneous, endothermic accompanied by increase in entropy. The understanding of atrazine and metolachlor sorption processes is essential to determine the pesticide fate and availability in soil for pest control, biodegradation, runoff and leaching.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2872
Author(s):  
Seyed Mohamad Reza Paran ◽  
Ghasem Naderi ◽  
Elnaz Movahedifar ◽  
Maryam Jouyandeh ◽  
Krzysztof Formela ◽  
...  

The effect of several concentrations of carboxylated nitrile butadiene rubber (XNBR) functionalized halloysite nanotubes (XHNTs) on the vulcanization and degradation kinetics of XNBR/epoxy compounds were evaluated using experimental and theoretical methods. The isothermal vulcanization kinetics were studied at various temperatures by rheometry and differential scanning calorimetry (DSC). The results obtained indicated that the nth order model could not accurately predict the curing performance. However, the autocatalytic approach can be used to estimate the vulcanization reaction mechanism of XNBR/epoxy/XHNTs nanocomposites. The kinetic parameters related to the degradation of XNBR/epoxy/XHNTs nanocomposites were also assessed using thermogravimetric analysis (TGA). TGA measurements suggested that the grafted nanotubes strongly enhanced the thermal stability of the nanocomposite.


Author(s):  
Adnan Bozdoğan ◽  
Kurban Yaşar

This research was performed to elucidate the effects of temperature on the degradation kinetics of anthocyanins in shalgam beverage. Shalgam beverage was produced according to traditional production method. Then, it was kept at three different temperatures (65°C, 75°C, and 85°C) for 12 hours, and the relevant quantities of anthocyanins were determined thereafter. The research revealed that degradation of the anthocyanins was well described with a 1st-order reaction kinetics model and the R2 values varied in the range of 0.9059-0.9715. Activation energy of the reaction was determined to be 48537 Joule/mole. The half-lives of anthocyanins at 65°C and 75° C, and 85°C were found to be 138.63, 136.72, and 51.57, respectively. Compared the half-life periods at different temperatures, anthocyanins were found to be more resistant at 65°C and 75°C than at 85°C.


2016 ◽  
Vol 79 (9) ◽  
pp. 1482-1489
Author(s):  
HAYRIYE BOZKURT ◽  
JAIRUS R. D. DAVID ◽  
RYAN J. TALLEY ◽  
D. SCOTT LINEBACK ◽  
P. MICHAEL DAVIDSON

ABSTRACT Sporolactobacillus species have been occasionally isolated from spoiled foods and environmental sources. Thus, food processors should be aware of their potential presence and characteristics. In this study, the heat resistance and influence of the growth and recovery media on apparent heat resistance of Sporolactobacillus nakayamae spores were studied and described mathematically. For each medium, survivor curves and thermal death curves were generated for different treatment times (0 to 25 min) at different temperatures (70, 75, and 80°C) and Weibull and first-order models were compared. Thermal inactivation data for S. nakayamae spores varied widely depending on the media formulations used, with glucose yeast peptone consistently yielding the highest D-values for the three temperatures tested. For this same medium, the D-values ranged from 25.24 ± 1.57 to 3.45 ± 0.27 min for the first-order model and from 24.18 ± 0.62 to 3.50 ± 0.24 min for the Weibull model at 70 and 80°C, respectively. The z-values determined for S. nakayamae spores were 11.91 ± 0.29°C for the Weibull model and 11.58 ± 0.43°C for the first-order model. The calculated activation energy was 200.5 ± 7.3 kJ/mol for the first-order model and 192.8 ± 22.1 kJ/mol for the Weibull model. The Weibull model consistently produced the best fit for all the survival curves. This study provides novel and precise information on thermal inactivation kinetics of S. nakayamae spores that will enable reliable thermal process calculations for eliminating this spoilage bacterium.


2019 ◽  
Vol 44 (4) ◽  
pp. 307-315 ◽  
Author(s):  
Xueya Dai ◽  
Hua Song ◽  
Hualin Song ◽  
Jing Gong ◽  
Feng Li ◽  
...  

A nickel phosphide hydrodeoxygenation catalyst (Ni2P-O/MCM-41) was prepared using a new synthetic method. The as-prepared catalyst was evaluated in the hydrodeoxygenation of benzofuran, and the effects of reaction temperature, pressure, and the H2/liquid ratio were investigated. A pseudo first-order model was employed to describe the reaction kinetics of benzofuran hydrodeoxygenation over the Ni2P-O/MCM-41 catalyst. The reaction rate constants ( k1– k5) at different temperatures were determined according to this model. At 533 K, the conversion of 2-ethylphenol in to ethylbenzene began to increase dramatically, and the yield of O-free product, ethylcyclohexane, started to increase rapidly. At 573 K, 3.0 MPa, and a H2/liquid ratio of 500 (V/V), the conversion of benzofuran over Ni2P-O/MCM-41 reached 93%, and the combined yield of O-free products was 91%. Contact time analysis indicated that demethylation was not favored over the Ni2P-O/MCM-41 catalyst.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2232 ◽  
Author(s):  
Piotr Krawiec ◽  
Łukasz Warguła ◽  
Daniel Małozięć ◽  
Piotr Kaczmarzyk ◽  
Anna Dziechciarz ◽  
...  

The article presents the potential impact of flat drive and transport belts on people’s safety during a fire. The analysis distinguished belts made of classically used fabric–rubber composite materials reinforced with cord and currently used multilayer polymer composites. Moreover, the products’ multilayers during the thermal decomposition and combustion can be a source of emissions for unpredictable and toxic substances with different concentrations and compositions. In the evaluation of the compared belts, a testing methodology was used to determine the toxicometric indicators (WLC50SM) on the basis of which it was possible to determine the toxicity of thermal decomposition and combustion products in agreement with the standards in force in several countries of the EU and Russia. The analysis was carried out on the basis of the registration of emissions of chemical compounds during the thermal decomposition and combustion of polymer materials at three different temperatures. Moreover, the degradation kinetics of the polymeric belts by using the thermogravimetric (TGA) technique was evaluated. Test results have shown that products of thermal decomposition resulting from the neoprene (NE22), leder leder (LL2), thermoplastic connection (TC), and extra high top cower (XH) belts can be characterized as moderately toxic or toxic. Their toxicity significantly increases with the increasing temperature of thermal decomposition or combustion, especially above 450 °C. The results showed that the belts made of several layers of polyamide can be considered the least toxic in fire conditions. The TGA results showed that NBR/PA/PA/NBR belt made with two layers of polyamide and the acrylonitrile–butadiene rubber has the highest thermal stability in comparison to other belts.


2020 ◽  
Vol 22 (2) ◽  
pp. 67-72
Author(s):  
Justyna Miłek

AbstractThe thermal stability of enzyme-based biosensors is crucial in economic feasibility. In this study, thermal deactivation profiles of catalase Aspergillus niger were obtained at different temperatures in the range of 35°C to 70°C. It has been shown that the thermal deactivation of catalase Aspergillus niger follows the first-order model. The half-life time t1/2 of catalase Aspergillus niger at pH 7.0 and the temperature of 35°C and 70°C were 197 h and 1.3 h respectively. Additionally, t1/2 of catalase Aspergillus niger at the temperature of 5°C was calculated 58 months. Thermodynamic parameters the change in enthalpy ΔH*, the change in entropy ΔS* and the change Gibbs free energy ΔG* for the deactivation of catalase at different temperatures in the range of 35°C to 70°C were estimated. Catalase Aspergillus niger is predisposed to be used in biosensors by thermodynamics parameters obtained.


2018 ◽  
Vol 7 (1) ◽  
pp. 61-67
Author(s):  
Do Ngoc Khue ◽  
Tran Dai Lam ◽  
Dao Duy Hung ◽  
Vu Quang Bach ◽  
Nguyen Van Anh ◽  
...  

AbstractSeveral advanced oxidation processes have been performed for the decomposition of ester nitrates (ENs), such as nitroglycerine (NG) and pentaerythritol tetranitrate (PETN). The reaction kinetics for removing NG and PETN by some of the advanced oxidation processes (e.g. UV-H2O2, Fenton, UV-Fenton) followed the pseudo-first-order model. The reaction rates in different systems followed the sequence ENs/UV<ENs/H2O2<ENs/UV-H2O2<ENs/Fenton<ENs/UV-Fenton. The effect of various parameters, such as pH, concentration of hydrogen peroxide, and temperature, on the degradation of NG and PETN were studied.


2014 ◽  
Vol 522-524 ◽  
pp. 552-559
Author(s):  
Min Zhang ◽  
Ben Zhi Ju ◽  
Shu Fen Zhang ◽  
Xue Zhang ◽  
Zhi Hua Cui

This paper presents a study on the adsorption of structurally different C.I. Acid Red 1(AR-1) and C.I. Acid Yellow 4(AY-4) from aqueous solution by a series water-insoluble crosslinked cationic starches with different degrees of substitution (DS) synthesized by a dry process. The adsorption quickly establish equilibrium within 15 min. The effective adsorption took place at the initial pH of 2-10 and pH of 2-8 for AR-1 and AY-4, respectively. The adsorption capacity of the two acid dyes increased with the increasing of DS of the crosslinked cationic starches. The adsorption capacity of AY-4 was almost two times higher than that of AR-1 under the present conditions. It was found that the adsorption kinetics of the two acid dyes on the crosslinked cationic starch was well described with the pseudo-second-order model (R2>0.99). Further, the Langmuir isotherm agreed well with the experimental data (R2>0.99). Besides, the thermodynamic parameters are shown.


Sign in / Sign up

Export Citation Format

Share Document