High cellulose diet promotes intestinal motility through regulating intestinal immune homeostasis and serotonin biosynthesis

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tao Xie ◽  
Fa Jin ◽  
Xiaokun Jia ◽  
Hengxu Mao ◽  
Yuting Xu ◽  
...  

Abstract It is widely accepted dietary fiber intimately linked to inflammatory and nervous diseases, which often been described with altered gastrointestinal (GI) motility. However, how dose dietary fiber modulate inflammation and crosstalk influence GI function has not been explained in detail. We found fiber-free diet reduced intestinal motility, accompanied by upregulated proinflammatory immunocytes and inflammatory cytokines in colon of mice. We also discovered high-cellulose diet increased synthesis of serotonin and expression of neurotrophic factors, both of that have been reported involved in promoting intestinal motility. In addition, metabolomics analysis showed increased tryptophan metabolites in high-cellulose diet mice, which happened to be required for serotonin biosynthesis. Further analysis revealed high-cellulose diet changed the composition of gut microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes, consequently, concentration of short-chain fatty acids (SCFAs), especially acetate. Orally administration of acetate confirmed its modulating to serotonin synthesis, neurotrophic factors expression and immunocyte differentiation through regulating histone deacetylase (HDAC3) activity in colon. Together, our results demonstrated high-cellulose diet promote intestinal motility through regulating intestinal homeostasis and enteric nervous system by increasing acetate production and HDAC3 inhibition. Thus, rich cellulose diet or acetate supplement can be considered as dietary advice to improve clinically intestinal motility insufficiency.

Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 152
Author(s):  
Kanako Omori ◽  
Hiroki Miyakawa ◽  
Aya Watanabe ◽  
Yuki Nakayama ◽  
Yijin Lyu ◽  
...  

Constipation is a common condition that occurs in many people worldwide. While magnesium oxide (MgO) is often used as the first-line drug for chronic constipation in Japan, dietary fiber intake is also recommended. Dietary fiber is fermented by microbiota to produce short-chain fatty acids (SCFAs). SCFAs are involved in regulating systemic physiological functions and circadian rhythm. We examined the effect of combining MgO and the water-soluble dietary fiber, inulin, on cecal SCFA concentration and microbiota in mice. We also examined the MgO administration timing effect on cecal SCFAs. The cecal SCFA concentrations were measured by gas chromatography, and the microbiota was determined using next-generation sequencing. Inulin intake decreased cecal pH and increased cecal SCFA concentrations while combining MgO increased the cecal pH lowered by inulin and decreased the cecal SCFA concentrations elevated by inulin. When inulin and MgO were combined, significant changes in the microbiota composition were observed compared with inulin alone. The MgO effect on the cecal acetic acid concentration was less when administered at ZT12 than at ZT0. In conclusion, this study suggests that MgO affects cecal SCFA and microbiota during inulin feeding, and the effect on acetic acid concentration is time-dependent.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Shi ◽  
Di Zhao ◽  
Fan Zhao ◽  
Chong Wang ◽  
Galia Zamaratskaia ◽  
...  

AbstractThis study was aimed to evaluate the differences in the composition of gut microbiota, tryptophan metabolites and short-chain fatty acids in feces between volunteers who frequently ate chicken and who frequently ate pork. Twenty male chicken-eaters and 20 male pork-eaters of 18 and 30 years old were recruited to collect feces samples for analyses of gut microbiota composition, short-chain fatty acids and tryptophan metabolites. Chicken-eaters had more diverse gut microbiota and higher abundance of Prevotella 9, Dialister, Faecalibacterium, Megamonas, and Prevotella 2. However, pork-eaters had higher relative abundance of Bacteroides, Faecalibacterium, Roseburia, Dialister, and Ruminococcus 2. In addition, chicken-eaters had high contents of skatole and indole in feces than pork-eaters, as well as higher contents of total short chain fatty acids, in particular for acetic acid, propionic acid, and branched chain fatty acids. The Spearman’s correlation analysis revealed that the abundance of Prevotella 2 and Prevotella 9 was positively correlated with levels of fecal skatole, indole and short-chain fatty acids. Thus, intake of chicken diet may increase the risk of skatole- and indole-induced diseases by altering gut microbiota.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1386
Author(s):  
Zixin Yang ◽  
Ting Huang ◽  
Ping Li ◽  
Jian Ai ◽  
Jiaxin Liu ◽  
...  

The interactions between cell-wall polysaccharides and polyphenols in the gastrointestinal tract have attracted extensive attention. We hypothesized that dietary fiber modulates the fermentation patterns of cyanidin-3-O-glucoside (C3G) in a fiber-type-dependent manner. In the present study, the effects of four dietary fibers (fructose-oligosaccharides, pectin, β-glucan and arabinoxylan) on the modulation of C3G fermentation patterns were investigated through in vitro fermentation inoculated with human feces. The changes in gas volume, pH, total carbohydrate content, metabolites of C3G, antioxidant activity, and microbial community distribution during in vitro fermentation were analyzed. After 24 h of fermentation, the gas volume and total carbohydrate contents of the four dietary-fiber-supplemented groups respectively increased and decreased to varying degrees. The results showed that the C3G metabolites after in vitro fermentation mainly included cyanidin, protocatechuic acid, 2,4,6-trihydroxybenzoic acid, and 2,4,6-trihydroxybenzaldehyde. Supplementation of dietary fibers changed the proportions of C3G metabolites depending on the structures. Dietary fibers increased the production of short-chain fatty acids and the relative abundance of gut microbiota Bifidobacterium and Lactobacillus, thus potentially maintaining colonic health to a certain extent. In conclusion, the used dietary fibers modulate the fermentation patterns of C3G in a fiber-type-dependent manner.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ryo Aoki ◽  
Masayoshi Onuki ◽  
Koya Hattori ◽  
Masato Ito ◽  
Takahiro Yamada ◽  
...  

Abstract Background Non-alcoholic liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome, and it can progress to non-alcoholic steatohepatitis (NASH). Alterations in the gut microbiome have been implicated in the development of NAFLD/NASH, although the underlying mechanisms remain unclear. Results We found that the consumption of the prebiotic inulin markedly ameliorated the phenotype of NAFLD/NASH, including hepatic steatosis and fibrosis, in mice. Inulin consumption resulted in global changes in the gut microbiome, including concomitant enrichment of the genera Bacteroides and Blautia, and increased concentrations of short-chain fatty acids, particularly acetate, in the gut lumen and portal blood. The consumption of acetate-releasing resistant starch protected against NAFLD development. Colonisation by Bacteroides acidifaciens and Blautia producta in germ-free mice resulted in synergetic effects on acetate production from inulin. Furthermore, the absence of free fatty acid receptor 2 (FFAR2), an acetate receptor, abolished the protective effect of inulin, as indicated by the more severe liver hypertrophy, hypercholesterolaemia and inflammation. These effects can be attributed to an exacerbation of insulin resistance in the liver, but not in muscle or adipose tissue. Conclusion These findings demonstrated that the commensal microbiome–acetate–FFAR2 molecular circuit improves insulin sensitivity in the liver and prevents the development of NAFLD/NASH.


2017 ◽  
Vol 17 (3) ◽  
pp. 627-644 ◽  
Author(s):  
Marianna Flis ◽  
Wiesław Sobotka ◽  
Zofia Antoszkiewicz

Abstract The present review summarizes the results of 37 experiments in which different types and levels (from 0.5 to 29.7%) of fibrous supplements were used in the formulation of diets for weaned piglets. Diets were supplemented with different sources of insoluble dietary fiber (iDF), soluble dietary fiber (sDF), or mixed DF sources. Most of the applied DF sources decreased the ileal and fecal organic matter digestibility, and they often lowered crude protein digestibility. A moderate addition (1.5-8%) of iDF sources increased average daily feed intake (ADFI) and, frequently, average daily gains (ADG). Sources of sDF as well as high inclusion levels of fiber-rich feeds tended to decrease ADFI and ADG. Improved fecal consistency, decreased diarrhea incidence and antibiotic interventions were confirmed in piglets fed diets with added lignocellulose, cooked or raw oat hulls and wheat bran. The dietary inclusion of iDF rather than sDF sources improved gastrointestinal tract (GIT) development, enzyme activity and gut morphology. An increase in the counts of beneficial gut microbiota and the concentrations of short-chain fatty acids was stimulated by diets with addition iDF or sDF sources. Such diets also slowed down proteolytic fermentation which negatively affects the colonic mucosa. Some research findings indicate that iDF sources improve intestinal barrier function. The analyzed experimental data suggest that the addition of 1.5-2% of a lignocellulose preparation, 2% of oat hulls, 4-8% of coarse wheat bran to diets for weaned piglets may be recommended to promote GIT development and health, and to improve growth performance.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
N. T. Devika ◽  
Karthik Raman

AbstractBifidobacteria, the initial colonisers of breastfed infant guts, are considered as the key commensals that promote a healthy gastrointestinal tract. However, little is known about the key metabolic differences between different strains of these bifidobacteria, and consequently, their suitability for their varied commercial applications. In this context, the present study applies a constraint-based modelling approach to differentiate between 36 important bifidobacterial strains, enhancing their genome-scale metabolic models obtained from the AGORA (Assembly of Gut Organisms through Reconstruction and Analysis) resource. By studying various growth and metabolic capabilities in these enhanced genome-scale models across 30 different nutrient environments, we classified the bifidobacteria into three specific groups. We also studied the ability of the different strains to produce short-chain fatty acids, finding that acetate production is niche- and strain-specific, unlike lactate. Further, we captured the role of critical enzymes from the bifid shunt pathway, which was found to be essential for a subset of bifidobacterial strains. Our findings underline the significance of analysing metabolic capabilities as a powerful approach to explore distinct properties of the gut microbiome. Overall, our study presents several insights into the nutritional lifestyles of bifidobacteria and could potentially be leveraged to design species/strain-specific probiotics or prebiotics.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Salla Hakkola ◽  
Lotta Nylund ◽  
Baoru Yang ◽  
Marko Kalliomäki ◽  
Kaisa Linderborg

AbstractThe recent development of diagnostic methods and current well-being trend have increased the awareness of gluten-related diseases, such as celiac disease (CeD) and non-celiac gluten sensitivity (NCGS), 1% and 6 % of general population, respectively. Currently for both CeD and NCGS, the only effective treatment is a life-long gluten-free diet, which makes adequate intake of fiber challenging. Despite of improving gut function, dietary fibers promote the growth of gut beneficial microbes. They are in charge of production of numerous compounds, which are essential for human health, such as enzymes and short chain fatty acids (SCFA). Moreover, dietary fiber has an effect on ammoniacal nitrogen levels and beta-glucuronidase activity, which are harmful for human in high concentrations. Gluten-free oats are an excellent source of dietary fiber and they have exceptionally good nutritional properties.In this observational study, SCFA production, ammoniacal nitrogen levels and beta-glucuronidase activity of oat-using CeD patients, NCGS patients and healthy controls were compared. SPME-GC-MS method was developed for SCFA analysis and the other biomarkers were analyzed by spectrophotometer.There were no significant differences between groups on propionic acid and butyric acid production, only the percentage of acetic acid of total SCFAs was higher in control group compared to NCGS group, (p = 0,03). Neither was there significant differences between groups in ammonia production or beta-glucuronidase activity.It has been scientifically proven that pure oats are suitable for celiac disease and gluten-sensitive patients, but they are not commonly used outside of Scandinavia. Our results stated that oat-using CeD and NCGS patients, whose disease is in balance, have gut microbiota capable of healthy production of essential SCFAs and normal levels of harmful compounds.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Lucille Yanckello ◽  
Jared Hoffman ◽  
Ishita Parikh ◽  
Jessie Hoffman ◽  
Stefan Green ◽  
...  

Abstract Objectives The APOE4 allele is a genetic risk factor for certain diseases, due in part to alterations in lipid and glucose metabolism. The gut microbiota is also known to impact metabolic and can be beneficially modulated by prebiotics. Prebiotics are fermented into metabolites by the gut microbiota. These metabolites act as gut-brain axis components. However, the interaction of the APOE4 allele, gut microbiota, and prebiotics are unknown. The goal of the study was to use prebiotic diet to restore the gut microbiome of mice with human APOE4 (E4FAD) genes. We hypothesized that the microbial compositions of E4 mice fed inulin, compared to control fed, will correlate to metabolites being produced by the microbiome that confer benefit to host metabolism. Methods At 3 months of age the E4FAD mice were fed for 4 months with either control or inulin diet. We used 16S rRNA sequencing to determine gut microbiota diversity and species variations; non-targeted UPLC-MS/MS and GC-MS analysis was used to determine metabolic profiles of blood. Results The inulin fed mice showed a more beneficial microbial taxa profile than those mice that were control fed. Control mice showed higher levels of dimethylglycine, choline, creatine and the polyamine spermine. Higher levels of spermine, specifically, correlate to higher levels of the Proteobacteria which has been implicated in GI disorders. E4 inulin fed mice showed higher levels of bile acids, short chain fatty acids and metabolites involved in energy, increased levels of tryptophan metabolites and robust increases in sphingomyelins. Specifically in E4 inulin fed mice we saw increases in certain genera of bacteria, all of which have been implicated in being beneficial to the composition of the microbiome and producing one or more of the above mentioned metabolites. Conclusions We believe the disparities of microbial metabolite production between E4 inulin fed mice and E4 control fed mice can be attributed to differences in certain taxa that produce these metabolites, and that higher levels of these taxa are due to the dietary intervention of inulin. Despite the APOE4 allele increasing one's risk for certain diseases, we believe that beneficially modulating the gut microbiota may be one way to enhance host metabolism and decrease disease risk over time. Funding Sources NIH/NIDDK T323048107792, NIH/NIA R01AG054459, NIEHS/NIH P42ES007380. Supporting Tables, Images and/or Graphs


Sign in / Sign up

Export Citation Format

Share Document