scholarly journals Repair Welding of the Tunnel Defect in Friction Stir Weld

2018 ◽  
Vol 37 (7) ◽  
pp. 675-681 ◽  
Author(s):  
Weipo Li ◽  
Zhimin Liang ◽  
Congwei Cai ◽  
Dianlong Wang

AbstractThe tunnel defect formed in friction stir weld would dramatically push the mechanical properties of joints into deterioration. In this study, friction stir welding process was adopted to repair the joints of 7N01 aluminum alloy with tunnel defect. The effects of friction stir repair welding process on the microstructure and mechanical properties were comprehensively investigated. Microstructure of the repaired joints shows that the grain size in nugget zone decreases slightly while the recrystallization in the retreating side of thermo-mechanically affected zone is intensified as the joints are repaired. The microhardness of the repaired joints declined slightly compared with the defective joint. However, the yield strength and tensile strength increase and recover to the values of the joints free of defect. The longitudinal residual stress in weld zone increased remarkably as the repair times increase. Compared with the once repaired joint, yield strength and tensile strength of the twice repaired joint reduced slightly, and the throat thickness also reduced during the repeated repair welding process. Therefore, the times of repair welding applied should be limited actually.

2021 ◽  
Author(s):  
MD. S.M. Chowdhury

Mechanical properties of friction stir welded (FSWed), double sided arc welded (DSAWed), fiber laser welded (FLWed) and diode laser welded (DLWed) on AZ31B Mg alloy were studied. After welding, grains at the centre became recrystallized. Brittle phase β-Mg₁₇AI₁₂ particles observed at the centre of the joint during fusion welding process. The yield strength (YS), ultimate tensile strength (UTS) and fatigue strength were lower in the FDWed samples than in the DSAWed samples. Welding defect at the bottom of the FDWed joint was observed when right hand thread (RHT) weld tool was considered. In FLWed joint, YS, UTS and fatigue strength, with a joint efficiency of ~91% was achieved while the YS, UTS and fatigue strength of the DLWed joints were notably lower. The DSAWed joints and DLWed joints exhibited a higher strain hardening capacity in comparison with the FSWed joints and FLWed joints, respectively.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 803 ◽  
Author(s):  
Xiaolong Liu ◽  
Pu Xie ◽  
Robert Wimpory ◽  
Wenya Li ◽  
Ruilin Lai ◽  
...  

Plates (37 mm thick) of 6005A-T6 aluminum alloy were butt joined by a single-sided and double-sided friction stir welding (FSW). The 3D residual stresses in the joints were determined using neutron diffraction. The microstructures were characterized by a transmission electron microscope (TEM) and electron backscatter diffraction (EBSD). In the single-sided FSW specimen, there were acceptable mechanical properties with a tensile strength of 74.4% of base metal (BM) and low residual stresses with peak magnitudes of approximately 37.5% yield strength of BM were achieved. The hardness is related to the grain size of the nugget zone (NZ), and in this study, precipitations were dissolved due to the high heat input. In the double-sided FSW specimen, there were good mechanical properties with a tensile strength of 80.8% of BM, but high residual stresses with peak magnitudes of approximately 70% yield strength of BM were obtained. The heat input by the second pass provided an aging environment for the first-pass weld zone where the dissolved phases were precipitated and residual stresses were relaxed.


2021 ◽  
Author(s):  
MD. S.M. Chowdhury

Mechanical properties of friction stir welded (FSWed), double sided arc welded (DSAWed), fiber laser welded (FLWed) and diode laser welded (DLWed) on AZ31B Mg alloy were studied. After welding, grains at the centre became recrystallized. Brittle phase β-Mg₁₇AI₁₂ particles observed at the centre of the joint during fusion welding process. The yield strength (YS), ultimate tensile strength (UTS) and fatigue strength were lower in the FDWed samples than in the DSAWed samples. Welding defect at the bottom of the FDWed joint was observed when right hand thread (RHT) weld tool was considered. In FLWed joint, YS, UTS and fatigue strength, with a joint efficiency of ~91% was achieved while the YS, UTS and fatigue strength of the DLWed joints were notably lower. The DSAWed joints and DLWed joints exhibited a higher strain hardening capacity in comparison with the FSWed joints and FLWed joints, respectively.


2020 ◽  
Vol 118 (1) ◽  
pp. 108
Author(s):  
M.A. Vinayagamoorthi ◽  
M. Prince ◽  
S. Balasubramanian

The effects of 40 mm width bottom plates on the microstructural modifications and the mechanical properties of a 6 mm thick FSW AA6061-T6 joint have been investigated. The bottom plates are placed partially at the weld zone to absorb and dissipate heat during the welding process. An axial load of 5 to 7 kN, a rotational speed of 500 rpm, and a welding speed of 50 mm/min are employed as welding parameters. The size of the nugget zone (NZ) and heat-affected zone (HAZ) in the weld joints obtained from AISI 1040 steel bottom plate is more significant than that of weld joints obtained using copper bottom plate due to lower thermal conductivity of steel. Also, the weld joints obtained using copper bottom plate have fine grain microstructure due to the dynamic recrystallization. The friction stir welded joints obtained with copper bottom plate have exhibited higher ductility of 8.9% and higher tensile strength of 172 MPa as compared to the joints obtained using a steel bottom plate.


2006 ◽  
Vol 324-325 ◽  
pp. 671-674
Author(s):  
Wang Xiang ◽  
Xiao Hua Xue

TiCp/ZA-12 composites have been fabricated by XDTM method and stirring-casting techniques. The tests for mechanical properties reveal that the tensile strength and strength increase with increasing fraction of TiC particles. When the fraction of TiC particles increase up to 10%, the tensile strength and yield strength are 390MPa and 340MPa, respectively and they increase by 11% and 17% than that of matrix respectively. From the analysis of fractography we can see that mixed fracture of cleavage fracture and dimple fracture exists in the TiCp/ZA-12 composites, and fractured particles are not found. Finally the fracture model of composites has been established based on the experimental results.


2013 ◽  
Vol 446-447 ◽  
pp. 312-315
Author(s):  
Ramaraju Ramgopal Varma ◽  
Abdullah Bin Ibrahim ◽  
B. Ravinder Reddy

The present research paper aims in evaluating the strength of the welded AA6351 alloy plates of 6 mm thick by using friction stir welding technique at different rotational speeds The applied welding technique is capable of achieving the mechanical properties of the alloy close to that of the original alloy. In the present investigation, the speeds of the spindle were varied from 1100 rpm to 1500 rpm with a constant transverse speed of 20 mm/min. The tensile strength of the joints is determined by an universal testing machine. The results from the present investigation show that the values of the yield strength were very much closer to the values of the AA6351Alloy prior to welding. It has been found from the experiments that the strength of the joints increases with the increase in the rotational speed; however, the same is decreasing after achieving certain speed.


Author(s):  
Mohammad W. Dewan ◽  
Muhammad A. Wahab ◽  
Khurshida Sharmin

Friction Stir Welding (FSW) offers significantly better performance on aluminum alloy joints compared to the conventional fusion arc welding techniques; however, plastic deformation, visco-plastic flow of metals, and complex non-uniform heating cycles during FSW processes, result in dissolution of alloying elements, intrinsic microstructural changes, and post-weld residual stress development. As a consequence, about 30% reduction in ultimate strength (UTS) and 60% reduction in yield strength (YS) were observed in defect-free, as-welded AA2219-T87 joints. PWHT is a common practice to refine grain-coarsened microstructures which removes or redistributes post-weld residual stresses; and improves mechanical properties of heat-treatable welded aluminum alloys by precipitation hardening. An extensive experimental program was undertaken on PWHT of FS-welded AA2219-T87 to obtain optimum PWHT conditions and improvement of the tensile properties. Artificial age-hardening (AH) helped in the precipitation of supersaturated alloying elements produced around weld nugget area during the welding process. As a result, an average 20% improvement in YS and 5% improvements in UTS was observed in age-hardened (AH-170°C-18h) specimens as compared to AW specimens. To achieve full benefit of PWHT, solution-treatment followed by age-hardening (STAH) was performed on FS-welded AA2219-T87 specimens. Solution-treatment (ST) helps in the grain refinement and formation of supersaturated precipitates in aluminum alloys. Age-hardening of ST specimens help in the precipitation of alloying elements around grain boundaries and strengthen the specimens. Optimum aging period is important to achieve better mechanical properties. For FS-welded AA2219-T87 peak aging time was 5 hours at 170°C. STAH-170°C -5h treated specimens showed about 78% JE based on UTS, 61% JE based on yield strength, and 36% JE based on tensile toughness values of base metal.


Author(s):  
R Palanivel ◽  
RF Laubscher ◽  
S Vigneshwaran ◽  
I Dinaharan

Friction stir welding is a solid-state welding technique for joining metals such as aluminum alloys quickly and reliably. This article presents a design of experiments approach (central composite face–centered factorial design) for predicting and optimizing the process parameters of dissimilar friction stir welded AA6351–AA5083. Three weld parameters that influence weld quality were considered, namely, tool shoulder profile (flat grooved, partial impeller and full impeller), rotational speed and welding speed. Experimental results detailing the variation of the ultimate tensile strength as a function of the friction stir welding process parameters are presented and analyzed. An empirical model that relates the friction stir welding process parameters and the ultimate tensile strength was obtained by utilizing a design of experiments technique. The models developed were validated by an analysis of variance. In general, the full impeller shoulder profile displayed the best mechanical properties when compared to the other profiles. Electron backscatter diffraction maps were used to correlate the metallurgical properties of the dissimilar joints with the joint mechanical properties as obtained experimentally and subsequently modeled. The optimal friction stir welding process parameters, to maximize ultimate tensile strength, are identified and reported.


2018 ◽  
Vol 53 (7) ◽  
pp. 494-503 ◽  
Author(s):  
Iman Alinaghian ◽  
Saeid Amini ◽  
Mohammad Honarpisheh

In recent decades, ultrasonic vibrations are used in manufacturing processes because they can improve tool life, material performance, and quality. One of them which can be integrated with ultrasonic vibrations is friction stir welding called ultrasonic assisted friction stir welding. In previous studies, the effect of ultrasonic vibrations on the mechanical, metallurgical, and thermal properties was investigated and there is not any residual stress investigations on ultrasonic assisted friction stir welding. Since residual stress plays an important role in performance and stability of components, the influence of ultrasonic power on the longitudinal residual stress in friction stir welding is investigated in this work. In spite of residual stress, tensile strength and quality of weldment were investigated as complementary terms to ensure successful performance of ultrasonic assisted friction stir welding. The findings indicated that high-frequency vibrations with power of 200 W can reduce the maximum tensile residual stress about 45% and significantly increase tensile strength. Also, ultrasonic vibrations prevent defect such has voids and tunnel in weld zone due to peening effect in ultrasonic assisted friction stir welding.


2020 ◽  
Vol 846 ◽  
pp. 110-116
Author(s):  
Akash Mukhopadhyay ◽  
Probir Saha

Additive Friction Stir (AFS) has the potential for extensive future application in metal based additive manufacturing. Powder based AFS is specifically useful for fabricating functionally graded structures. But, the consolidation of powder inside the hollow tool used in this operation hinders the powder based AFS process. This problem could be resolved by Additive Friction Stir Processing (AFSP) while maintaining the key advantages of AFS. A 3D deposit structure of height 5 mm and width 64 mm was made from Al6061 alloy powder by AFSP. Mechanical properties like ultimate tensile strength, yield strength and micro-hardness of the deposit were evaluated in both longitudinal and transverse directions. The ultimate tensile strength and micro-hardness of the deposit were comparable to Al6061-O and there was a significant increment in tensile yield strength. Also, the isotropic nature of the deposit could be inferred from similar mechanical properties in the longitudinal and transverse direction. Dimple ruptures seen in fractographic analysis gave evidence to the ductile nature of the deposit.


Sign in / Sign up

Export Citation Format

Share Document