Effect of Phase Composition and Microstructure of Oxide Scale on the Corrosion Resistance of SS400 Hot Rolled Strip

2011 ◽  
Vol 399-401 ◽  
pp. 1951-1957
Author(s):  
Xian Liang Zhou ◽  
Min Zhu ◽  
Xiao Zhen Hua ◽  
Zhi Guo Ye ◽  
Xia Cui ◽  
...  

Different phase compositions and microstructures of oxide scales were formed on the surface of SS400 hot rolled alloys by employing various heat treatment processes. Cyclic wet-dry immersion corrosion test, electrochemical impedance spectroscopy were used to investigate the corrosion resistance of strips with scales fabricated by different heat treatment processes. The results reveal that difference in the corrosion resistance of the various scales is due to the difference in the grain size of Fe3O4phase. Furthermore, the difference in the corrosion resistance of different oxide phases, exhibited by various scales, also render the strips to give various corrosion behaviors. It is surmised that the strip with oxide scale, which consist of a small mount of the outer layer Fe2O3phase distributed continuously and a large quantity of the inner layer Fe3O4phase with the fine grain size, and possess nice compactness, continuity, integrity in the morphology structure, has the best corrosion resistance.

2010 ◽  
Vol 152-153 ◽  
pp. 229-237
Author(s):  
Xian Liang Zhou ◽  
Min Zhu ◽  
Xiao Zhen Hua ◽  
Zhi Guo Ye ◽  
Qing Jun Chen

Various structure scales at the surface of SS400 hot rolled strip were fabricated by heat treatment processes involving different temperatures. A simulation about the effect of various temperatures on the oxide scale structure during the coiling process was carried out. The structure and corrosion behavior of different oxide scales formed at the surface of hot rolled strip were investigated in sodium bisulfite (NaHSO3) solution by scanning electron microscope (SEM), X-ray diffraction (XRD), polarization curves and electrochemical impedance spectroscopy (EIS). The scale prepared at 550 °C is mainly composed of one layer of Fe3O4 phase. The scales prepared at 600 °C and 700 °C consist of the outer thin Fe2O3 layer and the inner (Fe3O4+Fe particles) layer. The scale prepared at 650 °C is mainly composed of Fe3O4 phase as well as a spot of Fe2O3 phase. The thickness of scale prepared at 650°C is observed to be more homogeneous than that of other scales and the bonding between the scale and substrate is found to be very strong. The experimental results clearly reveal that the hot rolled strip with scale prepared at 650 °C exhibits the most excellent corrosion resisting property in 0.01 mol/L NaHSO3 solution.


2013 ◽  
Vol 347-350 ◽  
pp. 1171-1175 ◽  
Author(s):  
Bin Wang ◽  
Hong Mei Hu ◽  
Cui Zhou

The transverse properties were inferior to the longitudinal properties for the existence of banded structure in 20G steel. In order to eliminate the banded structure and improve the transverse performance of 20G steel, different heat treatment processes were adopted. The results showed that conventional normalizing could reduce the banded structure and refine the grain sizes. When 20G was heated with 10°C/min heating rated and then held at 920°C for 2h, the banded structure in the steel was almost eliminated and the microstructure was homogeneous with fine grain size, the strength increased by 14%. The non-metallic inclusion and carbide in the microstructure leaded to stress concentration and separation with the base metal. To some extent, heat treatment can improve the distribution and form of non-metallic inclusions.


Alloy Digest ◽  
1983 ◽  
Vol 32 (5) ◽  

Abstract AISI 1030 is a plain carbon steel containing nominally 0.30% carbon. It is used in the hot-rolled, normalized, oil-quenched-and-tempered or water-quenched-and-tempered conditions for general-purpose engineering and construction. It provides medium strength and toughness at low cost. Among its many uses are axles, bolts, gears and building sections. All data are on a single heat of fine-grain steel. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-94. Producer or source: Carbon and alloy steel mills.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 517
Author(s):  
Bin Sun ◽  
Lei Cheng ◽  
Chong-Yang Du ◽  
Jing-Ke Zhang ◽  
Yong-Quan He ◽  
...  

The atmospheric corrosion behavior of a hot-rolled strip with four types (I–IV) of oxide scale was investigated using the accelerated wet–dry cycle corrosion test. Corrosion resistance and porosity of oxide scale were studied by potentiometric polarization measurements. Characterization of samples after 80 cycles of the wet–dry corrosion test showed that scale comprised wüstite and magnetite had strongest corrosion resistance. Oxide scale composed of inner magnetite/iron (>70%) and an outer magnetite layer had the weakest corrosion resistance. The corrosion kinetics (weight gain) of each type of oxide scale followed an initial linear and then parabolic (at middle to late corrosion) relationship. This could be predicted by a simple kinetic model which showed good agreement with the experimental results. Analysis of the potentiometric polarization curves, obtained from oxide coated steel electrodes, revealed that the type I oxide scale had the highest porosity, and the corrosion mechanism resulted from the joint effects of electrochemical behavior and the porosity of the oxide scale. In the initial stage of corrosion, the corrosion product nucleated and an outer rust layer formed. As the thickness of outer rust layer increased, the corrosion product developed on the scale defects. An inner rust layer then formed in the localized pits as crack growth of the scale. This attacked the scale and expanded into the substrate during the later stage of corrosion. At this stage, the protective effect of the oxide scale was lost.


2020 ◽  
Vol 39 (1) ◽  
pp. 595-598
Author(s):  
Cui Chaopeng ◽  
Zhu Xiangwei ◽  
Li Qiang ◽  
Zhang Min ◽  
Zhu Guangping

AbstractThe Mo/ZrO2 electrode was prepared by combining hydrothermal synthesis with powder metallurgy, and this new electrode material has a totally different microstructure from the conventional electrode. The grain size of the new electrode was fine, and the size of ZrO2 in the alloy reached 200 nm. According to the results, the Mo–ZrO2 electrode has better performance, because the erosion occurs along the grain boundaries. Meanwhile, the new electrode, based on its fine grain, can effectively improve the corrosion resistance of the electrode.


2010 ◽  
Vol 64 ◽  
pp. 13-18 ◽  
Author(s):  
Shahin Khameneh Asl ◽  
Mohammad Reza Saghi Beyragh ◽  
Mahdi Ghassemi Kakroudi

Interest in nanomaterials has increased in recent years. This is due to the potential of size reduction to nanometric scale to provide properties of materials such as hardness, toughness, wear, and corrosion resistance. The current study is focused on WC-Co cermet coats, materials that are extensively used in applications requiring wear resistance. In this work, WC-17Co powder was thermally sprayed onto mild steel using High Velocity Oxy Fuel (HVOF) spray technique. The nanostructured specimen was produced from sprayed sample by heat-treating at 1100°C in a vacuum chamber. Their structures were studied by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Polarization and electrochemical impedance spectroscopy (EIS) tests were performed on the both types of coated samples in 3.5% NaCl solution. The amorphous phase in WC-17Co coating was transformed to crystalline phases by heat treatment at high temperatures. The heat treatment of these coatings at high temperature also resulted in partially dissolution of WC particles and formation of new crystalline phases. Generation of these phases produced the nanostructured coating with better mechanical properties. Comparative electro chemical test results showed that, the heat treatment could improve corrosion resistance of the nanostructured WC-17Co coat than the as sprayed coats.


2007 ◽  
Vol 353-358 ◽  
pp. 715-717
Author(s):  
Jian Peng ◽  
Rong Shen Liu ◽  
Ding Fei Zhang ◽  
Cheng Meng Song

The microstructures and mechanical properties of Mg-Zn-Zr-Y alloy extruded bar with different heat treatment processes were investigated, including solution treatments of 400 oC, 450 oC and 500 oC for 3 hours followed by 170 oC×24h aging treatment, and solely aging treatments of 160 oC, 180 oC for 24hours without solution after extruding. By comparing the grain size, strength and elongation of the samples, the heat treatment processes for extruded products with high strength and with medium strength were recommended.


2021 ◽  
Vol 1016 ◽  
pp. 1503-1509
Author(s):  
Kosuke Ueki ◽  
Soh Yanagihara ◽  
Kyosuke Ueda ◽  
Masaaki Nakai ◽  
Takayoshi Nakano ◽  
...  

The Co-20Cr-15W-10Ni (CCWN, mass%) alloy has excellent corrosion resistance and strength-ductility balance and is applied in almost all balloon-expandable stent platforms. To further reduce the invasiveness of stent placement, it is necessary to reduce the diameter of the stent. That is, both high strength and high ductility should be achieved while maintaining a low yield stress. In our previous studies, it was discovered that low-temperature heat-treatment (LTHT) at 873 K improves the elongation of the CCWN alloy. In this study, we focused on the grain refinement by swaging and static recrystallization to improve the strength of the alloy. The as-swaged alloy was recrystallized at 1373–1473 K for 100–300 s, followed by LTHT. A fine grain structure with an average grain size of 3–17 μm was obtained by static recrystallization. The η-phase (M12X-M6X type precipitates, M: metallic elements, X: C and/or N) formed during the recrystallization at 1373–1448 K. The alloys recrystallized at 1448 and 1473 K had a homogeneous structure with a small variation in the grain size. On the other hand, the alloys recrystallized at 1373 and 1423 K had an inhomogeneous structure in which fine and coarse grains were mixed. Both the strength and ductility of the CCWN alloy were improved by combining high-temperature short-time recrystallization and LTHT.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 705 ◽  
Author(s):  
Tarek Allam ◽  
Xiaofei Guo ◽  
Simon Sevsek ◽  
Marta Lipińska-Chwałek ◽  
Atef Hamada ◽  
...  

A novel medium manganese (MMn) steel with additions of Cr (18%), Ni (5%), V (1%), and N (0.3%) was developed in order to provide an enhanced corrosion resistance along with a superior strength–ductility balance. The laboratory melted ingots were hot rolled, cold rolled, and finally annealed at 1000 °C for 3 min. The recrystallized single-phase austenitic microstructure consisted of ultrafine grains (~1.3 µm) with a substantial amount of Cr- and V-based precipitates in a bimodal particle size distribution (100–400 nm and <20 nm). The properties of the newly developed austenitic MMn steel X20CrNiMnVN18-5-10 were compared with the standard austenitic stainless steel X5CrNi18-8 and with the austenitic twinning-induced plasticity (TWIP) steel X60MnAl17-1. With a total elongation of 45%, the MMn steel showed an increase in yield strength by 300 MPa and in tensile strength by 150 MPa in comparison to both benchmark steels. No deformation twins were observed even after fracture for the MMn steel, which emphasizes the role of the grain size and precipitation-induced change in the austenite stability in controlling the deformation mechanism. The potentio-dynamic polarization measurements in 5% NaCl revealed a very low current density value of 7.2 × 10−4 mA/cm2 compared to that of TWIP steel X60MnAl17-1 of 8.2 × 10−3 mA/cm2, but it was relatively higher than that of stainless steel X5CrNi18-8 of 2.0 × 10−4 mA/cm2. This work demonstrates that the enhanced mechanical properties of the developed MMn steel are tailored by maintaining an ultrafine grain microstructure with a significant amount of nanoprecipitates, while the high corrosion resistance in 5% NaCl solution is attributed to the high Cr and N contents as well as to the ultrafine grain size.


Sign in / Sign up

Export Citation Format

Share Document