Biodegradation of acid red 3BN dye in sequential batch reactor: parameters and kinetics studies

Author(s):  
Vijay Kumar ◽  
Akhilesh Khapre ◽  
Chandrakant Thakur ◽  
Prabir Ghosh ◽  
Parmesh Kumar Chaudhari

Abstract Textile and dye industries generate wastewater which is considered as highly polluted and carcinogenic. Due to this, treatment of wastewater is required earlier to discharge or recycle. In the present studies, treatment of dye bearing water (DBW) has been explored. The treatment was performed using activated sludge (mixed culture) for aerobic process in sequential batch reactor (SBR). The fill volume (V F) and fill time (t F) variation in the treatment of DBW was taken place. The initial value of dye concentration, chemical oxygen demand (COD), sludge, and hydraulic retention time (HRT) were found to play important role in the treatment. At optimum condition (HRT = 2.5 d), the 86.84% COD reduction of 190 mg/L COD, and 92.33% dye reduction of 339 mg/L dye were achieved. These values are equal to overall 94.85% dye reduction of 500 mg/L, and 93.15% COD reduction of 380 mg/L. As a result, 500 mg/L dye was reduced to 26 mg/L, and 380 mg/L COD was reduced to 25 mg/L. The biodegradation fitted to Monod kinetics, for which kinetics parameter values of specific growth rate constant of biomass µ = 0.0047 h−1, yield coefficient (Y) = 1.059, and substrate utilization rate (q) = 0.0044 h−1 were evaluated at HRT = 2.5 d. The results show, this process can be applied to treat Acid Red 3BN Dye Water (AR3BNDW).

2005 ◽  
Vol 51 (1) ◽  
pp. 167-174 ◽  
Author(s):  
J. Beltran de Heredia ◽  
J. Torregrosa ◽  
J.R. Dominguez ◽  
E. Partido

The degradation of wine distillery wastewaters by aerobic biological treatment has been investigated in a batch reactor. The evolution of the chemical oxygen demand, biomass and total contents of polyphenolic and aromatic compounds was followed through each experiment. According to the Contois model, a kinetic expression for the substrate utilization rate is derived, and its biokinetic constant is evaluated. The final effluents of the aerobic biological experiments were oxidized by Fenton's reagent. The evolution of chemical oxygen demand, hydrogen peroxide concentration and total contents of polyphenolic and aromatic compounds was followed through each experiment. A kinetic model to interpret the experimental data is proposed. The kinetic rate constant of the global reaction is determined.


2020 ◽  
Vol 146 (3) ◽  
pp. 04019124
Author(s):  
Estefania Freytez ◽  
Adriana Márquez ◽  
Maria Pire ◽  
Edilberto Guevara-Pérez ◽  
Sergio Pérez

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 129
Author(s):  
Yen-Hui Lin ◽  
Bing-Han Ho

The kinetics and performance of a biological activated carbon (BAC) reactor were evaluated to validate the proposed kinetic model. The Freundlich adsorption capacity (Ka) and adsorption intensity constants (n) obtained from the batch experiments were 1.023 ± 0.134 (mg/g) (L/mg)1/n and 2.036 ± 0.785, respectively. The effective diffusivity (Ds) of the substrate within the activated carbon was determined by comparing the adsorption model value with the experimental data to find the best fit value (4.3 × 10–4 cm2/d). The batch tests revealed that the yield coefficient (Y) was 0.18 mg VSS/mg COD. Monod and Haldane kinetics were applied to fit the experimental data and determine the biokinetic constants, such as the maximum specific utilization rate (k), half-saturation constant (KS), inhibition constant (Ki), and biomass death rate coefficient (kd). The results revealed that the Haldane kinetics fit the experimental data better than the Monod kinetics. The values of k, KS, Ki, and kdwere 3.52 mg COD/mg VSS-d, 71.7 mg COD/L, 81.63 mg COD/L, and 4.9 × 10−3 1/d, respectively. The BAC reactor had a high COD removal efficiency of 94.45% at a steady state. The average influent color was found to be 62 ± 22 ADMI color units, and the color removal efficiency was 73‒100% (average 92.3 ± 10.2%). The removal efficiency for ammonium was 73.9 ± 24.4%, while the residual concentration of ammonium in the effluent was 1.91 ± 2.04 mg/L. The effluent quality from the BAC reactor could meet the discharge standard and satisfy the reuse requirements of textile dye wastewater.


Author(s):  
Hamidi Aziz ◽  
Nur Puat ◽  
Motasem Alazaiza ◽  
Yung-Tse Hung

In this study, a sequential batch reactor (SBR) with different types of fibers was employed for the treatment of poultry slaughterhouse wastewater. Three types of fibers, namely, juite fiber (JF), bio-fringe fiber (BF), and siliconised conjugated polyester fiber (SCPF), were used. Four SBR experiments were conducted, using the fibers in different reactors, while the fourth reactor used a combination of these fibers. The treatment efficiency of the different reactors with and without fibers on biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia-nitrogen (NH3-N), phosphorus (P), nitrite (NO2), nitrate (NO3), total suspended solids (TSS), and oil-grease were evaluated. The removal efficiency for the reactors with fibers was higher than that of the reactor without fibers for all pollutants. The treated effluent had 40 mg/L BOD5 and 45 mg/L COD with an average removal efficiency of 96% and 93%, respectively, which meet the discharge limits stated in the Environmental Quality Act in Malaysia.


1989 ◽  
Vol 21 (4-5) ◽  
pp. 289-295 ◽  
Author(s):  
J. Kálmán ◽  
Z. Izsáki ◽  
L. Kovács ◽  
A. Grofcsik ◽  
I. Szebényi

The disposal of process wastewater from a wood carbonization factory was studied in a laboratory batch reactor. Chemical oxygen demand (COD) reduction of 92 - 96% was achieved for samples with initial COD concentrations of more than 100 g/l. The samples subjected to wet air oxidation showed no toxic effects in toxicology tests and were readily biodegradable. Effluent containing cyanide was also subjected to wet air oxidation, and a COD reduction of 75% and cyanide removal of 99.99997% was attained. The reaction rate and activation energy of cyanide hydrolysis were determined.


Author(s):  
Neela Acharya ◽  
Vijay Kumar ◽  
Vandana Gupta ◽  
Chandrakant Thakur ◽  
Parmesh Kumar Chaudhari

Abstract Domestic sewage (DS) was first treated in aerobic sequential batch reactor (SBR). In order to increase the treated water quality, DS from SBR was further treated using electrocoagulation (EC) and Ion exchange (IE) process. In the SBR study, process parameters such as hydraulic retention time (HRT) and reactor fill time (t f ) was optimized at various volume exchange ratio (VER) of 0.534, 0.4, 0.266, and 0.133. The best HRT and t f were observed to be 0.78 day (d) and 2 h, respectively, providing 72.37% chemical oxygen demand (COD) reduction (initial value of COD = 270 mg/dm3). Kinetics of biodegradation in SBR was also studied. The second stage treatment was performed in EC reactor at 1 ampere (A) current for 30 min electrolysis time (t R). EC reactor, further reduced COD and biological oxygen demand (BOD) up to 72 and 21 mg/dm3 from its average initial COD and BOD of 94 and 23 mg/dm3, respectively. Second stage treatment in IE process reduced hardness, sulphate, and phosphate up to 15, 0.05, and 0.13 mg/dm3 from its initial value 350, 5.48 and 1.16 mg/dm3, respectively. The treated water can be used as potable water after disinfection as its water quality is near to river water.


2012 ◽  
Vol 66 (4) ◽  
pp. 824-830 ◽  
Author(s):  
Ximena María Vargas Ramírez ◽  
Gina Maria Hincapié Mejía ◽  
Kelly Viviana Patiño López ◽  
Gloria Restrepo Vásquez ◽  
Juan Miguel Marín Sepúlveda

A coupled system of the photo-Fenton advanced oxidation technique and an aerobic sequential batch reactor (SBR) was used to treat wastewater from biodiesel production using either palm or castor oil. The photo-Fenton reaction and biological process were evaluated individually and were effective at treating the wastewater; nevertheless, each process required longer degradation times for the wastewater pollutants compared with the coupled system. The proposed coupled photo-Fenton/aerobic SBR system obtained a 90% reduction of the chemical oxygen demand (COD) in half of the time required for the biological system individually.


2019 ◽  
Vol 1 (2) ◽  
pp. 1
Author(s):  
Lindawati Lindawati

Sebuah Sequencing Batch Reactor (SBR) digunakan untuk mengevaluasi peranan Biochemical Oxygen Demand (BOD) biosensor dalam proses optimasi proses pengolahan nutrien karbon, nitrogen dan fosfat. Hasil penelitian menunjukkan bahwa BOD biosensor dapat dipergunakan untuk penentuan karbon organik, sehingga reduksi siklus SBR dapat dilakukan dan efisiensi proses meningkat. Pola konsumsi karbon organik ditemukan dengan adanya ‘tanda diam’ pada fase anoksik/ anaerobik, di mana dari tanda ini, fase aerobik dapat segera dimulai. Reduksi durasi siklus SBR dari 8 jam menjadi 4 jam meningkatkan efiesiensi pengolahan C, N dan P yang meningkat pula (hampir dua kali lebih tinggi).


2014 ◽  
Vol 13 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Ghasem Najafpour Darzi ◽  
Reza Katal ◽  
Hossein Zare ◽  
Seyed Omid Rastegar ◽  
Poorya Mavaddat

Sign in / Sign up

Export Citation Format

Share Document