scholarly journals Effect of homogenization and ultrasonication on the physical properties of insoluble wheat bran fibres

2015 ◽  
Vol 29 (4) ◽  
pp. 423-432 ◽  
Author(s):  
Ran Hu ◽  
Min Zhang ◽  
Benu Adhikari ◽  
Yaping Liu

AbstractWheat bran is rich in dietary fibre and its annual output is abundant, but underutilized. Insoluble dietary fibre often influences food quality negatively; therefore, how to improve the physical and chemical properties of insoluble dietary fibre of wheat bran for post processing is a challenge. Insoluble dietary fibre was obtained from wheat bran and micronized using high-pressure homogenization, high-intensity sonication, and a combination of these two methods. The high-pressure homogenization and high-pressure homogenization+high-intensity sonication treatments significantly (p<0.05) improved the solubility, swelling, water-holding, oil-holding, and cation exchange capacities. The improvement of the above properties by high-intensity sonication alone was marginal. In most cases, the high-pressure homogenization process was as good as the high-pressure homogenization+high-intensity sonication process in improving the above-mentioned properties; hence, the contribution of high-`intensity sonication in the high-pressure homogenization+high-intensity sonication process was minimal. The best results show that the minimum particle size of wheat bran can reach 9 μm, and the solubility, swelling, water-holding, oil-holding, cation exchange capacities change significantly.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Dianbin Su ◽  
Xin-Di Zhu ◽  
Yong Wang ◽  
Dong Li ◽  
Li-Jun Wang

Abstract Citrus fiber dispersion with different concentrations (5–25 g/kg) was treated by high-pressure homogenization (90 and 160 MPa) for two cycles. The particle size distribution, hydration properties of powders, morphology and rheological measurements were carried out to study the microstructure and rheological properties changes by high-pressure homogenization (HPH). In conclusion, the HPH can reduce the particle size of fiber, improve the water holding capacity and water binding capacity. Furthermore, fiber shape can be modified from globular cluster to flake-like slices, and tiny pores can be formed on the surface of citrus fiber. The apparent viscosity, storage modulus and loss modulus were increased by HPH whereas the activation energy was reduced. The Hershcel–Bulkley model, Carreau model and Power Law mode were selected to evaluate the rheological properties.


1984 ◽  
Vol 2 (4) ◽  
pp. 112-116
Author(s):  
Delbert D. Hemphill ◽  
Robert L. Ticknor ◽  
D.J. Flower

Composted sewage sludge was combined with several other organic and inorganic components to form 19 growing media. Increasing the proportion of sludge compost in media from 25 to 50% increased media pH, electrical conductivity (EC), airfilled pore space (AS), and nutrient levels, and usually increased growth of pansy, snapdragon, and cabbage plants. Of the other organic components, sawdust-based media had the highest pH, EC, and AS; sphagnum peat-based media the highest water holding capacity. Plant fresh weights were highest with bark, which produced media with highest retention of K, Ca, Mg, and Na. Of the inorganic components, pumice produced media with lower AS and lower yields of each crop than did perlite or vermiculite. Inorganic components had no effect on media pH or EC. Yields of all crops were usually higher in media containing compost than in 5 commercial potting mixes but less than in a fertilizer-amended bark medium. High yields appeared to be associated with higher medium AS and higher initial levels of major and minor plant nutrients.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 448F-448
Author(s):  
D. Wees ◽  
R. Lowe ◽  
D. Donnelly

Textile fiber residues spun into small (2 to 5 mm), soft pellets (Flocagro®), through a patented process, were evaluated for horticultural use. Pellets alone and in mixtures with other substrates, were assessed using standard criteria including cation exchange capacity (CEC), aeration porosity, bulk density, and water-holding capacity. The physical and chemical properties of these textile pellets were acceptable as a horticultural growing medium when mixed with substrates such as peat; it was light-weight, had a high water-holding capacity, moderately high aeration porosity, neutral pH, low inherent fertility, low buffering capacity, and mixed easily with other substrates. The potential of Flocagro® in potting mixtures for radish and tomato seedlings and micropropagated potato plantlets was demonstrated.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1735
Author(s):  
Suleiman K. Bello ◽  
Abdullah H. Alayafi ◽  
Samir G. AL-Solaimani ◽  
Kamal A. M. Abo-Elyousr

Salinity impedes soil and crop productivity in over 900 million ha of arable lands worldwide due to the excessive accumulation of salt (NaCl). To utilize saline soils in agriculture, halophytes (salt-tolerant plants) are commonly cultivated. However, most food crops are glycophytes (salt-sensitive). Thus, to enhance the productivity of saline soils, gypsum (CaSO4·2H2O) as well as bio-organic (combined use of organic materials, such as compost and straw with the inoculation of beneficial microbes) amendments have been continuously recognized to improve the biological, physical and chemical properties of saline soils. CaSO4·2H2O regulates the exchange of sodium (Na+) for calcium (Ca2+) on the clay surfaces, thereby increasing the Ca2+/Na+ ratio in the soil solution. Intracellularly, Ca2+ also promotes a higher K+/Na+ ratio. Simultaneously, gypsum furnishes crops with sulfur (S) for enhanced growth and yield through the increased production of phytohormones, amino acids, glutathione and osmoprotectants, which are vital elicitors in plants’ responses to salinity stress. Likewise, bio-organic amendments improve the organic matter and carbon content, nutrient cycling, porosity, water holding capacity, soil enzyme activities and biodiversity in saline soils. Overall, the integrated application of gypsum and bio-organic amendments in cultivating glycophytes and halophytes is a highly promising strategy in enhancing the productivity of saline soils.


Sign in / Sign up

Export Citation Format

Share Document