Oxidative stress, histopathological and electron microscopic alterations induced by dimethylnitrosamine in renal male mice and the protective effect of α-lipoic acid

Author(s):  
Reham Z. Hamza ◽  
Hayat A.A. Ismail ◽  
Nahla S. El-Shenawy

AbstractBackground:Dimethylnitrosamine (DMN) is a waste product of several industrial processes. α-Lipoic acid (ALA) is a vitamin-like chemical also called as an antioxidant. Therefore, the study was designed to investigate the potential benefits of ALA in reducing the nephropathy of DMN in male mice.Methods:Animals were divided into 6 groups (n=8) and received their treatment for 4 weeks as follows: groups 1–4 served as control, ALA-treatment (16.12 mg/kg), DMN low dose treatment and DMN high dose treatment, respectively. Groups 5 and 6 received ALA before DMN low dose and DMN high dose, respectively. Superoxide dismutase, catalase, glutathione peroxidase and xanthine oxidase, total antioxidant capacity, nitric oxide, lipid peroxidation as well as the levels of uric acid and creatinine were determined. The histological and ultrastructure changes of renal tissue were also evaluated.Results:Treatment of the DMN mice with ALA showed a reduction in the levels of kidney nitric oxide, lipid peroxidation, as well as creatinine and uric acid levels as compared with the DMN group. The results show that ALA plays an important role in quenching the free radicals resulting from the metabolism of DMN, thereby inhibiting lipid peroxidation and protecting membrane lipids from oxidative damage and, in turn, preventing oxidative stress and apoptosis. Histopathological and ultrastructure analysis of renal tissue confirmed the oxidative stress results occurred in DMN renal mice. Concomitant administration of ALA with DMN significantly decreased all the histopathological changes induced by DMN.Conclusions:The present study elucidated the therapeutic effects of ALA administered in combination with DMN to minimize its renal toxicity.

2018 ◽  
Vol 29 (5) ◽  
pp. 499-505 ◽  
Author(s):  
Lakhwinder Singh ◽  
Atul Arya ◽  
Sumeet Gupta

Abstract Background Diabetes is a downregulator of atrial natriuretic peptide (ANP), resulting in reduced nitric oxide level and low expression of endothelial nitric oxide synthase by which nitric oxide level get reduced. In the present study, we examined the role of ANP in reduced nitric oxide level, which may be responsible in controlling diabetic nephropathy in rats. Methods Serum nitrite/nitrate ratio, blood urea nitrogen, protein in urine, urinary output, serum creatinine, serum cholesterol, kidney weight, kidney hypertrophy, renal cortical collagen content, thiobarbituric acid level, and antioxidant enzymatic activities were assessed. Results Treatment with lisinopril (1 mg/kg) significantly attenuated diabetes-induced elevated glucose level, cholesterol level, and protein in urine concentration. Whereas ANP at low dose (5 μg/kg) has no effect on elevated markers of diabetic nephropathy, treatment with intermediate (10 μg/kg) and high-dose ANP (20 μg/kg) significantly attenuated the diabetes-induced increased blood urea nitrogen, protein in urine, urinary output, creatinine, cholesterol, kidney weight, kidney hypertrophy, renal collagen content, and thiobarbituric acid level and reduced endogenous antioxidant enzymatic activities. High dose of ANP was more effective in attenuating the diabetes-induced nephropathy, renal oxidative stress, and antioxidant enzyme activity as compared with the treatment with low-dose ANP (5 μg/kg), intermediate-dose ANP (10 μg/kg), or lisinopril (1 mg/kg, employed as standard agent). Administration of erythro-9-(2-hydroxy-3-nonyl)adenine, a phosphodiesterase-2 inhibitor (3 mg/kg), in combination with high-dose ANP significantly attenuated high-dose ANP induced ameliorative effects in diabetic nephropathy. Conclusions Taken together, these results indicate that diabetes-induced oxidative stress and lipid alterations may be responsible for the induction of nephropathy in diabetic rats. ANP at intermediate and high doses have prevented the development of diabetes-induced nephropathy by reducing the cholesterol level, protein in urine concentration, and renal oxidative stress and by increasing the nitrite/nitrate ratio, certainly providing the direct nephroprotective action.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1427
Author(s):  
Junhui Zhang ◽  
Fengqin Feng ◽  
Minjie Zhao

Glycerol monocaprylate (GMC) is a glycerol derivative of medium-chain fatty acids (MCFAs) and is widely used as a preservative in food processing. However, GMC and its hydrolytic acid (octylic acid) have antibacterial properties that may affect the physiology and intestinal microecology of the human body. Therefore, in this study, the effects of two different dosages of GMC (150 and 1600 mg kg−1) on glucose, lipid metabolism, inflammation, and intestinal microecology of normal diet-fed C57BL/6 mice were comprehensively investigated. The obtained results showed that the level of triglycerides (TGs) in the low-dose group down-regulated significantly, and the anti-inflammatory cytokine interleukin 10 (IL-10) significantly increased, while the pro-inflammatory cytokines monocyte chemotactic protein 1 (MCP-1) and interleukin 1beta (IL-1β) in the high-dose group were significantly decreased. Importantly, GMC promoted the α-diversity of gut microbiota in normal-diet-fed mice, regardless of dosages. Additionally, it was found that the low-dose treatment of GMC significantly increased the abundance of Lactobacillus, while the high-dose treatment of GMC significantly increased the abundance of SCFA-producers such as Clostridiales, Lachnospiraceae, and Ruminococcus. Moreover, the content of short-chain fatty acids (SCFAs) was significantly increased by GMC supplementation. Thus, our research provides a novel insight into the effects of GMC on gut microbiota and physiological characteristics.


2008 ◽  
Vol 295 (4) ◽  
pp. F1134-F1141 ◽  
Author(s):  
Laura G. Sánchez-Lozada ◽  
Virgilia Soto ◽  
Edilia Tapia ◽  
Carmen Avila-Casado ◽  
Yuri Y. Sautin ◽  
...  

Endothelial dysfunction is a characteristic feature during the renal damage induced by mild hyperuricemia. The mechanism by which uric acid reduces the bioavailability of intrarenal nitric oxide is not known. We tested the hypothesis that oxidative stress might contribute to the endothelial dysfunction and glomerular hemodynamic changes that occur with hyperuricemia. Hyperuricemia was induced in Sprague-Dawley rats by administration of the uricase inhibitor, oxonic acid (750 mg/kg per day). The superoxide scavenger, tempol (15 mg/kg per day), or placebo was administered simultaneously with the oxonic acid. All groups were evaluated throughout a 5-wk period. Kidneys were fixed by perfusion and afferent arteriole morphology, and tubulointerstitial 3-nitrotyrosine, 4-hydroxynonenal, NOX-4 subunit of renal NADPH-oxidase, and angiotensin II were quantified. Hyperuricemia induced intrarenal oxidative stress, increased expression of NOX-4 and angiotensin II, and decreased nitric oxide bioavailability, systemic hypertension, renal vasoconstriction, and afferent arteriolopathy. Tempol treatment reversed the systemic and renal alterations induced by hyperuricemia despite equivalent hyperuricemia. Moreover, because tempol prevented the development of preglomerular damage and decreased blood pressure, glomerular pressure was maintained at normal values as well. Mild hyperuricemia induced by uricase inhibition causes intrarenal oxidative stress, which contributes to the development of the systemic hypertension and the renal abnormalities induced by increased uric acid. Scavenging of the superoxide anion in this setting attenuates the adverse effects induced by hyperuricemia.


2017 ◽  
Vol 26 (6) ◽  
pp. 1709-1714
Author(s):  
Su-Jung Cho ◽  
Hye-Jin Kim ◽  
Ji-Young Choi ◽  
Eun-Young Kwon ◽  
Ye Jin Kim ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hazal Tuzcu ◽  
Ibrahim Aslan ◽  
Mutay Aslan

Effect of high-dose insulin analog initiation therapy was evaluated on lipid peroxidation and oxidative stress markers in type 2 diabetes mellitus (T2DM). Twenty-four T2DM patients with HbA1c levels above 10% despite ongoing therapy with sulphonylurea and metformin were selected. Former treatment regimen was continued for the first day followed by substitution of sulphonylurea therapy with different insulin analogs. Glycemic profiles were determined over 72 hours by Continuous Glucose Monitoring System (CGMS), and blood/urine samples were collected at 24 and 72 hours. Insulin analog plus metformin treatment significantly reduced glucose variability. Plasma and urine lipid peroxidation were markedly decreased following insulin analog plus metformin treatment. No correlation existed between glucose variability and levels of plasma and urine oxidative stress markers. Likewise, changes in mean blood glucose from baseline to end point showed no significant correlation with changes in markers of oxidative stress. On the contrary, decreased levels of oxidative stress markers following treatment with insulin analogs were significantly correlated with mean blood glucose levels. In conclusion, insulin plus metformin resulted in a significant reduction in oxidative stress markers compared with oral hypoglycemic agents alone. Data from this study suggests that insulin analogs irrespective of changes in blood glucose exert inhibitory effects on free radical formation.


2007 ◽  
Vol 292 (5) ◽  
pp. G1359-G1365 ◽  
Author(s):  
Christopher N. Andrews ◽  
Adil E. Bharucha ◽  
Michael Camilleri ◽  
Phillip A. Low ◽  
Barbara Seide ◽  
...  

The incretin glucagon-like peptide-1 (GLP-1), which is used to treat diabetes mellitus, delays gastric emptying by inhibiting vagal activity. GLP-1 also increases fasting and postprandial gastric volume in humans. On the basis of animal studies, we hypothesized that nitric oxide mediates the effects of GLP-1 on gastric volumes. To assess the effects of nitrergic blockade on GLP-1-induced gastric accommodation in humans, in this double-blind study, 31 healthy volunteers were randomized to placebo (i.e., saline), GLP-1, or the nitric oxide synthase inhibitor NG-monomethyl-l-arginine acetate (l-NMMA; 4 mg·kg−1·h−1) alone or with GLP-1. Thereafter, 16 additional subjects were randomized to GLP-1 alone or together with a higher dose of l-NMMA (10 mg/kg bolus plus 8 mg·kg−1·h−1 infusion). Gastric volumes (fasting pre- and postdrug, postprandial postdrug) were measured by 99mTc-single-photon-emission computed tomography imaging. GLP-1 increased ( P = 0.04) fasting gastric volume by 83 ± 16 ml (vs. 17 ± 11 ml for placebo) and augmented ( P ≤ 0.01) postprandial accommodation by 688 ± 165 ml (vs. 542 ± 29 ml for placebo). l-NMMA (low dose) alone did not affect fasting or postprandial gastric volume. l-NMMA (low dose) did not attenuate the effect of GLP-1 on gastric volumes. In contrast, l-NMMA (high dose) did not affect fasting volume but blunted GLP-1-mediated postprandial accommodation (postprandial change = 494 ± 37 ml, P ≤ 0.01 vs. GLP-1 alone). These data are consistent with the hypothesis that nitric oxide partly mediates the effects of GLP-1 on postprandial but not fasting gastric volumes in humans.


Author(s):  
Gianpaolo Papaccio ◽  
Francesco Aurelio Pisanti ◽  
Michael V.G. Latronico ◽  
Eduardo Ammendola ◽  
Michela Galdieri

2019 ◽  
Vol 8 (6) ◽  
pp. 918-927 ◽  
Author(s):  
Li Pang ◽  
Ping Deng ◽  
Yi-dan Liang ◽  
Jing-yu Qian ◽  
Li-Chuan Wu ◽  
...  

Abstract Paraquat (PQ) is a widely used herbicide in the agricultural field. The lack of an effective antidote is the significant cause of high mortality in PQ poisoning. Here, we investigate the antagonistic effects of alpha lipoic acid (α-LA), a naturally existing antioxidant, on PQ toxicity in human microvascular endothelial cells (HMEC-1). All the doses of 250, 500 and 1000 μM α-LA significantly inhibited 1000 μM PQ-induced cytotoxicity in HMEC-1 cells. α-LA pretreatment remarkably diminished the damage to cell migration ability, recovered the declined levels of the vasodilator factor nitric oxide (NO), elevated the expression level of endothelial nitric oxide synthases (eNOS), and inhibited the upregulated expression of vasoconstrictor factor endothelin-1 (ET-1). Moreover, α-LA pretreatment inhibited reactive oxygen species (ROS) generation, suppressed the damage to the mitochondrial membrane potential (ΔΨm) and mitigated the inhibition of adenosine triphosphate (ATP) production in HMEC-1 cells. These results suggested that α-LA could alleviate PQ-induced endothelial dysfunction by suppressing oxidative stress. In summary, our present study provides novel insight into the protective effects and pharmacological potential of α-LA against PQ toxicity in microvascular endothelial cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Néstor Aarón Mosqueda-Romo ◽  
Ana Laura Rodríguez-Morales ◽  
Fidel Orlando Buendía-González ◽  
Margarita Aguilar-Sánchez ◽  
Jorge Morales-Montor ◽  
...  

We decreased the level of gonadal steroids in female and male mice by gonadectomy. We infected these mice withP. bergheiANKA and observed the subsequent impact on the oxidative stress response. Intact females developed lower levels of parasitaemia and lost weight faster than intact males. Gonadectomised female mice displayed increased levels of parasitaemia, increased body mass, and increased anaemia compared with their male counterparts. In addition, gonadectomised females exhibited lower specific catalase, superoxide dismutase, and glutathione peroxidase activities in their blood and spleen tissues compared with gonadectomised males. To further study the oxidative stress response inP. bergheiANKA-infected gonadectomised mice, nitric oxide levels were assessed in the blood and spleen, and MDA levels were assessed in the spleen. Intact, sham-operated, and gonadectomised female mice exhibited higher levels of nitric oxide in the blood and spleen compared with male mice. MDA levels were higher in all of the female groups. Finally, gonadectomy significantly increased the oxidative stress levels in females but not in males. These data suggest that differential oxidative stress is influenced by oestrogens that may contribute to sexual dimorphism in malaria.


Sign in / Sign up

Export Citation Format

Share Document