Proximate analysis, HPTLC finger print analysis and multi spectrometric analysis of Strychnos nux-vomica nuts

Author(s):  
Shakila Ramachandran ◽  
Saravanan Meenatchisundaram ◽  
Rajesh Allu ◽  
Sujith Thatipelli ◽  
Achintya Kumar Mandal

Abstract Background In alternative medicine, plants pay a major role. Some plants are known for their poisonous nature but still have some importance in the herbal drug industry for their medicinal value. Strychnos nux-vomica is one such plant. Its nuts are called as poison nut due to the presence of alkaloids. Both the nut and its minerals are having medicinal properties and hence the present study was indented to understand the nature of primary metabolites and multi elemental composition. Methods The nuts of S. nux-vomica were procured, authenticated, powdered and subjected to proximate analysis parameters, visualization of thin layer chromatographic separation (TLC) and finger print profiling through high performance thin layer chromatographic (HPTLC); surface morphology by scanning electron microscopy, energy dispersive X-ray analysis, X-ray fluorescence spectrometry, X-ray photoelectron spectrometry, powder X-ray diffractometry and inductively coupled plasma optical emission spectrometry. Results In HPTLC, 7 spots each under 254 nm, 366 nm, derivatization with vanillin sulphuric acid (VSR) reagent appeared and 2 spots with Dragendorff’s reagent. In HPTLC, 12 peaks at 254 nm, 9 peaks at 366 nm, 7 peaks at 520 nm after derivatization with VSR reagent detected. Elements such as potassium, calcium, magnesium, chlorine, aluminium, iron, manganese, sodium, nickel, phosphorus, copper, zinc, sulphur and silicon were identified. PXRD revealed that the presence of potassium chloride, calcite and dolomite as major elemental composition. Conclusions The presence of all the above elements has vital roles on human physiology. Potassium, calcium, chlorine, aluminium, nickel, phosphorus, sulphur and silicon are reported for the first time in this study.

Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 490
Author(s):  
Rudaviro Garidzirai ◽  
Phillimon Modisha ◽  
Innocent Shuro ◽  
Jacobus Visagie ◽  
Pieter van Helden ◽  
...  

The effects of Mg and Zn dopants on the catalytic performance of Pt/Al2O3 catalyst were investigated for dehydrogenation of perhydrodibenzyltoluene (H18-DBT) as a liquid organic hydrogen carrier. Al2O3 supports were modified with Mg and Zn to produce Mg-Al2O3 and Zn-Al2O3 with a target loading of 3.8 wt.% for dopants. The modified supports were impregnated with chloroplatinic acid solution to produce the catalysts Pt/Al2O3, Pt/Mg-Al2O3 and Pt/Zn-Al2O3 of 0.5 wt.% Pt loading. Thereafter, the catalysts were characterised using inductively coupled plasma- optical emission spectrometry, scanning electron microscopy-energy dispersive X-ray spectroscopy, hydrogen temperature-programmed reduction, carbon-monoxide pulse chemisorption, ammonia temperature-programmed desorption, X-ray diffraction and transmission electron microscopy. The dehydrogenation experiments were performed using a horizontal plug flow reactor system and the catalyst time-on-stream was 22 h. Pt/Mg-Al2O3 showed the highest average hydrogen flowrate of 29 nL/h, while an average of 27 nL/h was obtained for both Pt/Al2O3 and Pt/Zn-Al2O3. This has resulted in a hydrogen yield of 80% for Pt/Mg-Al2O3, 71% for Pt/Zn-Al2O3 and 73% for Pt/Al2O3. In addition, the conversion of H18-DBT ranges from 99% to 92%, Pt 97–90% and 96–90% for Pt/Mg-Al2O3, Pt/Zn-Al2O3 and Pt/Al2O3, respectively. Following the latter catalyst order, the selectivity to dibenzyltoluene (H0-DBT) ranges from 78% to 57%, 75–51% and 71–45%. Therefore, Pt/Mg-Al2O3 showed improved catalytic performance towards dehydrogenation of H18-DBT.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Izabela Michalak ◽  
Krzysztof Marycz ◽  
Katarzyna Basińska ◽  
Katarzyna Chojnacka

The biomass ofVaucheria sessilisforms algal mats in many freshwaters. There is a need to find the method of algal biomass utilization.Vaucheria sessilisis a rich source of micro- and macronutrients and can be used as a soil amendment. In the paper, the elemental composition of enriched, via bioaccumulation process, macroalga was investigated. For this purpose, two independent techniques were used: scanning electron microscopy with an energy dispersive X-ray analytical system (SEMEDX) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The biomass was exposed to two microelemental solutions, with Cu(II) and Zn(II) ions. After two weeks of the experiment, macroalga accumulated 98.5 mg of Zn(II) ions in 1 g of dry biomass and 68.9 mg g−1of Cu(II) ions. Micrographs performed by SEM proved that bioaccumulation occurred. Metal ions were bound on the surface and in the interior of cells. Mappings of all cations showed that in the case of the surface of biomass (biosorption), the elements constituted aggregations and in the case of the cross section (bioaccumulation) they were evenly distributed. The algal biomass with permanently bound microelements can find an application in many branches of the industry (feed, natural fertilizers, etc.).


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2925
Author(s):  
Jędrzej Proch ◽  
Aleksandra Orłowska ◽  
Przemysław Niedzielski

In this work, a methodology for determination of As(III), As(V), dimethylarsinic acid (DMA), Fe(II) and Fe(III) in fifty-eight samples (forty-nine products of thirteen brands from three countries) commercial yerba mate (Ilex paraguariensis) was performed. The hyphenated high performance liquid chromatography inductively coupled plasma optical emission spectrometry (HPLC-ICP OES) technique was used. Arsenic was determined below the quantification limit in 38 samples of yerba mate. As(III) was found at the level 0.09 and 0.08 mg kg−1. The As(V) content was in the range: 0.21 to 0.28 mg kg−1. The content of DMA was found the highest of the three arsenic species in the range: 0.21 to 0.47 mg kg−1. The content of Fe(II) and Fe(III) was found in the range: 0.61 to 15.4 mg kg−1 and 0.66 to 43.1 mg kg−1, respectively and the dominance of Fe(III) was observed. Moreover, total and extractable content of 16 elements were determined. The results have been subjected to statistical analysis in order to establish relationships between samples of the same origin (country), kind (type) and composition (purity).


2020 ◽  
Vol 82 (6) ◽  
pp. 1247-1259
Author(s):  
Maiara P. de Souza ◽  
Tiele M. Rizzetti ◽  
Michele Hoeltz ◽  
Mainara Dahmer ◽  
João A. Júnior ◽  
...  

Abstract The transformation of residual biomass from bioremediation processes into new products is a worldwide trend driven by economic, environmental and social gain. The present study aimed to evaluate the potential for obtaining bioproducts of technological interest from the remaining periphytic biomass formed during a bioremediation process with an algal turf scrubber (ATS) system installed in a lake catchment. Different methodologies were used according to the target bioproduct. Analyses were performed by high performance liquid chromatography with diode array detector (HPLC/DAD), gas chromatography mass spectrometry (GC-MS), ultraviolet–visible spectroscopy (UV-VIS) and inductively coupled plasma optical emission spectrometry (ICP-OES). The results demonstrated that the periphytic biomass presented potential since protein (17.7%), carbohydrates (22.4%), total lipids (3.3%) with 3.6 mg mL−1 of fatty acids, antioxidants (144.5 μmol Trolox eq. g−1) and chlorophyll a, chlorophyll b and carotenoids (1,719.7 μg mL−1, 541.2 μg mL−1 and 317.7 μg mL−1, respectively) were obtained. Inorganic analysis presented a value of 42.3 ± 2.58% of total ash and metal presence was detected, indicating bioaccumulation. The properties found in periphyton strengthen the possibility of its application in different areas, ensuring bioremediation efficiency.


2020 ◽  
Vol 38 (12) ◽  
pp. 1331-1344
Author(s):  
Shohel Siddique ◽  
Kyari Yates ◽  
Kerr Matthews ◽  
Laszlo J Csetenyi ◽  
James Njuguna

Oil-based mud (OBM) waste from the oil and gas exploration industry can be valorised to tailor-made reclaimed clay-reinforced low-density polyethylene (LDPE) nanocomposites. This study aims to fill the information gap in the literature and to provide opportunities to explore the effective recovery and recycling techniques of the resources present in the OBM waste stream. Elemental analysis using inductively coupled plasma–optical emission spectrometry (ICP-OES) and X-ray fluorescence analysis, chemical structural analysis by Fourier transform infrared (FTIR) spectroscopy, and morphological analysis of LDPE/organo-modified montmorillonite (LDPE/MMT) and LDPE/OBM slurry nanocomposites by scanning electron microscopy (SEM) have been conducted. Further analysis including calorimetry, thermogravimetry, spectroscopy, microscopy, energy dispersive X-ray analysis and X-ray diffraction (XRD) was carried out to evaluate the thermo-chemical characteristics of OBM waste and OBM clay-reinforced LDPE nanocomposites, confirming the presence of different clay minerals including inorganic salts in OBM slurry powder. The microscopic analysis revealed that the distance between polymer matrix and OBM slurry filler is less than that of MMT, which suggests better interfacial adhesion of OBM slurry compared with the adhesion between MMT and LDPE matrix. This was also confirmed by XRD analysis, which showed the superior delamination structure OBM slurry compared with the structure of MMT. There is a trend noticeable for both of these fillers that the nanocomposites with higher percentage filler contents (7.5 and 10.0 wt% in this case) were indicated to act as a thermal conductive material. The heat capacity values of nanocomposites decreased about 33% in LDPE with 7.5 wt% MMT and about 17% in LDPE with 10.0 wt% OBM slurry. It was also noted, for both nanocomposites, that the residue remaining after 1000°C increases with the incremental wt% of fillers in the nanocomposites. There is a big difference in residue amount (in %) left after thermogravimetric analysis in the two nanocomposites, indicating that OBM slurry may have significant influence in decomposing LDPE matrix; this might be an interesting area to explore in the future. The results provide insight and opportunity to manufacture waste-derived renewable nanocomposites with enhanced structural and thermal properties.


2020 ◽  
Vol 105 (9) ◽  
pp. 1392-1403
Author(s):  
Lingcheng Su ◽  
Jiajun Chen ◽  
Huada Ruan ◽  
Dongqi Chen ◽  
Xi Chen ◽  
...  

Abstract Thermal treatment is one of the most common processes in mineral modification, and this process has been applied to the modification of mineral waste material to improve its adsorption ability of methyl orange (MO) and lead (Pb) in this study. The properties of modified mineral waste material (MMWM) before and after thermal modification were characterized by using the Brunauer–Emmett–Teller (BET) N2 adsorption/desorption measurement, field emission scanning electron microscope (FESEM) coupled with energy-dispersive X-ray (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Phase transformation was investigated related to the change in surface morphology and dehydroxylation that occurred in MMWM samples during the process of thermal treatment. To study adsorption performances of Pb and MO onto the newly modified MMWM, several experiments were carried out under different adsorption conditions and the results were determined using inductively coupled plasma optical emission spectrometry (ICP-OES) and UV-Vis spectrophotometry. The thermally treated MMWM samples showed morphological transformation and an increasing trend in BET specific surface area (SSA) up to 500 °C followed by a decreasing trend till 1000 °C. Thermal modification of MMWM successfully improved Pb adsorption from 349 to 515 mg/g, corresponding to the MMWM modified at 600 °C, and the methyl orange (MO) adsorption from 68 to 87.6 mg/g at 400 °C. The adsorptions of Pb and MO were mainly chemisorption and monolayer coverage, as the pseudo-second-order model and the Langmuir equation displayed good correlations for Pb and MO adsorption data.


2015 ◽  
Vol 6 ◽  
pp. 1957-1969 ◽  
Author(s):  
Jacek Wojnarowicz ◽  
Sylwia Kusnieruk ◽  
Tadeusz Chudoba ◽  
Stanislaw Gierlotka ◽  
Witold Lojkowski ◽  
...  

Zinc oxide nanopowders doped with 1–15 mol % cobalt were produced by the microwave solvothermal synthesis (MSS) technique. The obtained nanoparticles were annealed at 800 °C in nitrogen (99.999%) and in synthetic air. The material nanostructure was investigated by means of the following techniques: X-ray diffraction (XRD), helium pycnometry density, specific surface area (SSA), inductively coupled plasma optical emission spectrometry (ICP-OES), extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and with magnetometry using superconducting quantum interference device (SQUID). Irrespective of the Co content, nanoparticles in their initial state present a similar morphology. They are composed of loosely agglomerated spherical particles with wurtzite-type crystal structure with crystallites of a mean size of 30 nm. Annealing to temperatures of up to 800 °C induced the growth of crystallites up to a maximum of 2 μm in diameter. For samples annealed in high purity nitrogen, the precipitation of metallic α-Co was detected for a Co content of 5 mol % or more. For samples annealed in synthetic air, no change of phase structure was detected, except for precipitation of Co3O4 for a Co content of 15 mol %. The results of the magentometry investigation indicated that all as-synthesized samples displayed paramagnetic properties with a contribution of anti-ferromagnetic coupling of Co–Co pairs. After annealing in synthetic air, the samples remained paramagnetic and samples annealed under nitrogen flow showed a magnetic response under the influences of a magnetic field, likely related to the precipitation of metallic Co in nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document