scholarly journals Assessing flow regime alterations in a temporary river – the River Celone case study

2015 ◽  
Vol 63 (3) ◽  
pp. 263-272 ◽  
Author(s):  
Anna Maria De Girolamo ◽  
Antonio Lo Porto ◽  
Giuseppe Pappagallo ◽  
Francesc Gallart

AbstractIn this paper, we present an approach to evaluate the hydrological alterations of a temporary river. In these rivers, it is expected that anthropogenic pressures largely modify low-flow components of the flow regime with consequences for aquatic habitat and diversity in invertebrate species. First, by using a simple hydrological index (IARI) river segments of the Celone stream (southern Italy) whose hydrological regime is significantly influenced by anthropogenic activities have been identified. Hydrological alteration has been further classified through the analysis of two metrics: the degree (Mf) and the predictability of dry flow conditions (Sd6). Measured streamflow data were used to calculate the metrics in present conditions (impacted). Given the lack of data from pristine conditions, simulated streamflow time series were used to calculate the metrics in reference conditions. The Soil and Water Assessment Tool (SWAT) model was used to estimate daily natural streamflow. Hydrological alterations associated with water abstractions, point discharges and the presence of a reservoir were assessed by comparing the metrics (Mf, Sd6) before and after the impacts. The results show that the hydrological regime of the river segment located in the upper part of the basin is slightly altered, while the regime of the river segment downstream of the reservoir is heavily altered. This approach is intended for use with ecological metrics in defining the water quality status and in planning streamflow management activities.

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 512 ◽  
Author(s):  
SangSoo Baek ◽  
Junho Jeon ◽  
Hyuk Lee ◽  
Jongkwan Park ◽  
Kyung Cho

Source tracking of dissolved organic matter (DOM) is important to manage water quality in rivers. However, it is difficult to find the source of this DOM because various DOMs can be added from the river watershed. Moreover, the DOM composition can be changed due to environmental conditions. This study investigated the change of organic matter characteristics in the Taewha River of Ulsan City, Korea, before and after rainfall. A Soil and Water Assessment Tool (SWAT) was used to simulate water flow from various sources, and dissolved organic matter characterization was conducted in terms of molecular size distribution, hydrophobicity, fluorescence excitation and emission, and molecular composition. From the results, it was found that lateral flow transported hydrophobic and large-molecule organic matter after rainfall. According to the orbitrap mass spectrometer analysis, the major molecular compound of the DOM was lignin. Coupling the SWAT model with organic matter characterization was an effective approach to find sources of DOM in river.


2020 ◽  
Author(s):  
Rahul Kumar Singh ◽  
Dr. Manoj Kumar Jain

<p>The rivers around the world have been transformed due to various anthropogenic activities and have led to the altered natural flow regime, which is crucial for controlling the essential environmental conditions within the river which in turn forms the biotic diversity. This study quantifies the adverse impacts due to the construction of dams on the hydrology of the Godavari and Krishna River Basins over the last half a century. The quantification of hydrologic alteration at five representative gauging stations of both the rivers has undertaken using Indicator of Hydrological Alteration (IHA) and the Flow Health (FH) methods based on the Range of Variability approach. To evaluate the alterations of flow regime due to the impact of dams (anthropogenic) only, the data for wet and dry years were excluded from the analysis as these represent the impact of climate variability. The IHA results reveal that the average monthly flow (especially from June to September), annual extreme streamflow indices (1-, 3-, and 7-day maxima flow), and rise and fall rates were among the most affected ones when compared to the pre-impacted period. The improved overall hydrologic alteration values for the Dhalegaon, Nowrangpur, K. Agraharam, and Vijayawada stations were found approximately 75.5%, 73.2%, 76.9 %, and 67.9 % respectively, suggesting a significant impact on the overall riverine ecosystem. The flow health (FH) analysis scores for high flow (HF) (K.Agraharam and Yadgir) highest monthly (HM) (Dhalegaon, K.Agraharam, and Yadgir), Low Flow (LF) (Dhalegaon) and flood flow intervals (FFI) (Dhalegaon and Vijayawada) during the test period were in the very high alteration range and these all hydrological indicator represents important ecological functions in both the rivers. The results showed in this study may guide in strategizing the multi-step process needed to improve the riverine ecosystems of Godavari and Krishna Basins and their ecological functioning.</p><p>Keywords: Hydrological alteration; Krishna River; Godavari River; Ecosystem</p>


2012 ◽  
Vol 16 (4) ◽  
pp. 1259-1267 ◽  
Author(s):  
Y. Luo ◽  
J. Arnold ◽  
P. Allen ◽  
X. Chen

Abstract. Baseflow is an important component in hydrological modeling. The complex streamflow recession process complicates the baseflow simulation. In order to simulate the snow and/or glacier melt dominated streamflow receding quickly during the high-flow period but very slowly during the low-flow period in rivers in arid and cold northwest China, the current one-reservoir baseflow approach in SWAT (Soil Water Assessment Tool) model was extended by adding a slow- reacting reservoir and applying it to the Manas River basin in the Tianshan Mountains. Meanwhile, a digital filter program was employed to separate baseflow from streamflow records for comparisons. Results indicated that the two-reservoir method yielded much better results than the one-reservoir one in reproducing streamflow processes, and the low-flow estimation was improved markedly. Nash-Sutcliff efficiency values at the calibration and validation stages are 0.68 and 0.62 for the one-reservoir case, and 0.76 and 0.69 for the two-reservoir case. The filter-based method estimated the baseflow index as 0.60, while the model-based as 0.45. The filter-based baseflow responded almost immediately to surface runoff occurrence at onset of rising limb, while the model-based responded with a delay. In consideration of watershed surface storage retention and soil freezing/thawing effects on infiltration and recharge during initial snowmelt season, a delay response is considered to be more reasonable. However, a more detailed description of freezing/thawing processes should be included in soil modules so as to determine recharge to aquifer during these processes, and thus an accurate onset point of rising limb of the simulated baseflow.


2020 ◽  
Author(s):  
Hamed Vagheei ◽  
Paolo Vezza ◽  
Guillermo Palau-Salvador ◽  
Fulvio Boano

<p><strong>The Impacts of Water Quality Changes on Aquatic Ecosystems: A Case Study of Clariano River, Spain </strong></p><p>Hamed Vagheei<sup>1</sup>, Paolo Vezza<sup>2</sup>, Guillermo Palau-Salvador<sup>3</sup>, Fulvio Boano<sup>4</sup></p><ol><li>PhD Student, the Polytechnic University of Turin, [email protected]</li> <li>Assistant professor, the Polytechnic University of Turin, [email protected]</li> <li>Associate Professor, the Polytechnic University of Valencia, [email protected]</li> <li>Associate Professor, the Polytechnic University of Turin, [email protected]</li> </ol><p><strong>Abstract</strong></p><p>Water quality degradation resulting from different anthropogenic activities such as agriculture, deforestation and urbanization is a serious worldwide challenge which have negative impacts on aquatic ecology. Unfortunately, it is still difficult to quantitatively determine the impacts of water quality changes on aquatic communities. The objective of the present research activity is to investigate aquatic ecosystem responses to water quality deterioration using a case study of Clariano River, Spain. The Clariano River faces low water quality and the loss of biodiversity in some parts as a result of agricultural, industrial and livestock activities as well as wastewater treatment plants (WWTP) effluents entering the river. The Soil and Water Assessment Tool (SWAT), an eco-hydrological model, is used in the present study for the modelling of discharge, sediment and nutrients. SWAT-CUP is also used to calibrate and validate the SWAT model. We are currently employing the results from the calibrated model to obtain a better understanding of possible relations between water quality and biodiversity. In fact, the present study will focus on macroinvertebrates as biological indicators of stream health, and the model predictions will be coupled with empirical correlations between stream water quality and macroinvertebrates presence in order to assess the impacts of water quality changes on aquatic ecosystem. In addition, different model scenarios will be compared to explore the potential impacts of changes in land use, climate and WWTPs operation on the aquatic ecosystem.</p><p><strong>Keywords:</strong> aquatic ecosystem, Clariano River, eco-hydrological modelling, water quality, water resources management</p>


2021 ◽  
Vol 21 (1) ◽  
pp. 63-71
Author(s):  
Edmund Tomaszewski

Abstract The main aim of this study was to assess what range of downstream low flow changes is caused by dam construction directly. An investigation was based on the assumption that the difference in change ratio of flow between gauging cross-sections located downstream and upstream position of dammed reservoir identifies the scope of changes determined by dam construction. Three dammed reservoirs located on Polish rivers were selected for analysis. They were different in size, hydrological regime and water management purposes. For each reservoir pair of water, gauges were selected. The input data were daily discharge series collected by the Polish Institute of Meteorology and Water Management. For each time series 20-year period before and after dam construction was established. Comparison of annual minimum flow ratios for these peri-ods as well as analysis of low flow dynamics and inertia allowed to identify range and direction of changes caused by investigated reservoirs.


Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 932 ◽  
Author(s):  
Camila Abe ◽  
Felipe Lobo ◽  
Yonas Dibike ◽  
Maycira Costa ◽  
Vanessa Dos Santos ◽  
...  

Land cover changes (LCC) affect the water balance (WB), changing surface runoff (SurfQ), evapotranspiration (ET), groundwater (GW) regimes, and streamflow (Q). The Tapajós Basin (southeastern Amazon) has experienced LCC over the last 40 years, with increasing LCC rates projected for the near future. Several studies have addressed the effects of climate changes on the region’s hydrology, but few have explored the effects of LCC on its hydrological regime. In this study, the Soil and Water Assessment Tool (SWAT) was applied to model the LCC effects on the hydrology of the Upper Crepori River Basin (medium Tapajós Basin), using historical and projected LCC based on conservation policies (GOV_2050) and on the “Business as Usual” trend (BAU_2050). LCC that occurred from 1973 to 2012, increased Q by 2.5%, without noticeably altering the average annual WB. The future GOV_2050 and BAU_2050 scenarios increased SurfQ by 238.87% and 300.90%, and Q by 2.53% and 2.97%, respectively, and reduced GW by 4.00% and 5.21%, and ET by 2.07% and 2.43%, respectively. Results suggest that the increase in deforestation will intensify floods and low-flow events, and that the conservation policies considered in the GOV_2050 scenario may still compromise the region’s hydrology at a comparable level to that of the BAU_2050.


2017 ◽  
Author(s):  
Ronalton Evandro Machado ◽  
Milena Lopes ◽  
Lubienska Cristina Lucas J. Ribeiro

Abstract. Forests play an important role in watershed hydrology, regulating the transfer of water within the system. Their role in maintaining the hydrological regime of watersheds is still a controversial issue. Consequently, we use the Soil and Water Assessment Tool (SWAT) model to simulate scenarios of land use in a watershed. In one of these scenarios we identified, through GIS techniques, Environmentally Sensitive Areas (ESAs) which have been undergoing watershed degradation and we considered these areas as protected by forest cover. This scenario was then compared to the current usage scenario regarding watershed sediment yield and hydrological regime. The results showed a reduction in sediment yield of 54 % among different scenarios, whereas watershed water yield was reduced by 19.3 %.


Author(s):  
B. Bade ◽  
D. R. Gyawali ◽  
S. Timilsina

Abstract. This study details climate change assessment of the hydrological regime of Indrawati basin of Nepal. The study uses Soil and Water Assessment Tool (SWAT) model to delineate, discretize and parameterize the Indrawati basin to compute model’s input parameters. The model was then run for 1990–2014 to simulate the discharge at the outlet (Dholalghat). The coefficient of determination R2 and Nash-Sutcliffe (ENS) were used to evaluate model calibration and validation. The results found were satisfactory for the gauging station R2 = 0.951 and ENS = 0.901 for calibration and R2 = 0.937 and. ENS = 0.906 for validation. The calibrated hydrological model was run for the future climate change scenario using the RegCM4-LMDZ4 data and the relative changes with the baseline scenarios were analyzed. The comparison suggests that the historical trend of flow is decreasing at the rate of 0.55 m3/s per year. According to RegCM4-LMDZ4 simulations, the trend is going to continue but at a flatter rate. The decreasing trend is observed to be very less. The characteristic peak flow month in the historical scenario is August but the RegCM4-LMDZ4 led simulated flows suggest a shift in monthly peak to October suggesting decrease in monsoon flows and a subsequent significant increase in flows from October to January.


2021 ◽  
Vol 13 (7) ◽  
pp. 1382
Author(s):  
Muhammad Yasir ◽  
Tiesong Hu ◽  
Samreen Abdul Hakeem

The damming of rivers has altered their hydrological regimes. The current study evaluated the impacts of major hydrological interventions of the Zhikong and Pangduo hydropower dams on the Lhasa River, which was exposed in the form of break and change points during the double-mass curve analysis. The coefficient of variability (CV) for the hydro-meteorological variables revealed an enhanced climate change phenomena in the Lhasa River Basin (LRB), where the Lhasa River (LR) discharge varied at a stupendous magnitude from 2000 to 2016. The Mann–Kendall trend and Sen’s slope estimator supported aggravated hydro-meteorological changes in LRB, as the rainfall and LR discharge were found to have been significantly decreasing while temperature was increasing from 2000 to 2016. The Sen’s slope had a largest decrease for LR discharge in relation to the rainfall and temperature, revealing that along with climatic phenomena, additional phenomena are controlling the hydrological regime of the LR. Reservoir functioning in the LR is altering the LR discharge. The Soil and Water Assessment Tool (SWAT) modeling of LR discharge under the reservoir’s influence performed well in terms of coefficient of determination (R2), Nash–Sutcliffe coefficient (NSE), and percent bias (PBIAS). Thus, simulation-based LR discharge could substitute observed LR discharge to help with hydrological data scarcity stress in the LRB. The simulated–observed approach was used to predict future LR discharge for the time span of 2017–2025 using a seasonal AutoRegressive Integrated Moving Average (ARIMA) model. The predicted simulation-based and observation-based discharge were closely correlated and found to decrease from 2017 to 2025. This calls for an efficient water resource planning and management policy for the area. The findings of this study can be applied in similar catchments.


Sign in / Sign up

Export Citation Format

Share Document